Brix, LM;Häusl, AS;Toksöz, I;Bordes, J;van Doeselaar, L;Engelhardt, C;Narayan, S;Springer, M;Sterlemann, V;Deussing, JM;Chen, A;Schmidt, MV;
PMID: 35091292 | DOI: 10.1016/j.psyneuen.2022.105670
Glucocorticoid (GC)-mediated negative feedback of the hypothalamic-pituitary-adrenal (HPA) axis, the body's physiological stress response system, is tightly regulated and essential for appropriate termination of this hormonal cascade. Disturbed regulation and maladaptive response of this axis are fundamental components of multiple stress-induced psychiatric and metabolic diseases and aging. The co-chaperone FK506 binding protein 51 (FKBP51) is a negative regulator of the GC receptor (GR), is highly stress responsive, and its polymorphisms have been repeatedly associated with stress-related disorders and dysfunctions in humans and rodents. Proopiomelanocortin (Pomc)-expressing corticotropes in the anterior pituitary gland are one of the key cell populations of this closed-loop GC-dependent negative feedback regulation of the HPA axis in the periphery. However, the cell type-specific role of FKBP51 in anterior pituitary corticotrope POMC cells and its impact on age-related HPA axis disturbances are yet to be elucidated. Here, using a combination of endogenous knockout and viral rescue, we show that male mice lacking FKBP51 in Pomc-expressing cells exhibit enhanced GR-mediated negative feedback and are protected from age-related disruption of their diurnal corticosterone (CORT) rhythm. Our study highlights the complexity of tissue- and cell type-specific, but also cross-tissue effects of FKBP51 in the rodent stress response at different ages and extends our understanding of potential targets for pharmacological intervention in stress- and age-related disorders.
Engstr�m Ruud L Pereira MMA, de Solis AJ, Fenselau H Br�ning JC
PMID: 31974377 | DOI: 10.1038/s41467-020-14291-3
Activation of Agouti-Related Peptide (AgRP)-expressing neurons promotes feeding and insulin resistance. Here, we examine the contribution of neuropeptide Y (NPY)-dependent signaling to the diverse physiological consequences of activating AgRP neurons. NPY-deficient mice fail to rapidly increase food intake during the first hour of either chemo- or optogenetic activation of AgRP neurons, while the delayed increase in feeding is comparable between control and NPY-deficient mice. Acutely stimulating AgRP neurons fails to induce systemic insulin resistance in NPY-deficient mice, while increased locomotor activity upon AgRP neuron stimulation in the absence of food remains unaffected in these animals. Selective re-expression of NPY in AgRP neurons attenuates the reduced feeding response and reverses the protection from insulin resistance upon optogenetic activation of AgRP neurons in NPY-deficient mice. Collectively, these experiments reveal a pivotal role of NPY-dependent signaling in mediating the rapid feeding inducing effect and the acute glucose regulatory function governed by AgRP neurons
Liu, H;He, Y;Bai, J;Zhang, C;Zhang, F;Yang, Y;Luo, H;Yu, M;Liu, H;Tu, L;Zhang, N;Yin, N;Han, J;Yan, Z;Scarcelli, NA;Conde, KM;Wang, M;Bean, JC;Potts, CHS;Wang, C;Hu, F;Liu, F;Xu, Y;
PMID: 36593271 | DOI: 10.1038/s42255-022-00701-x
Leptin acts on hypothalamic neurons expressing agouti-related protein (AgRP) or pro-opiomelanocortin (POMC) to suppress appetite and increase energy expenditure, but the intracellular mechanisms that modulate central leptin signalling are not fully understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an adaptor protein that binds to the insulin receptor and negatively regulates its signalling pathway, can interact with the leptin receptor and enhance leptin signalling. Ablation of Grb10 in AgRP neurons promotes weight gain, while overexpression of Grb10 in AgRP neurons reduces body weight in male and female mice. In parallel, deletion or overexpression of Grb10 in POMC neurons exacerbates or attenuates diet-induced obesity, respectively. Consistent with its role in leptin signalling, Grb10 in AgRP and POMC neurons enhances the anorexic and weight-reducing actions of leptin. Grb10 also exaggerates the inhibitory effects of leptin on AgRP neurons via ATP-sensitive potassium channel-mediated currents while facilitating the excitatory drive of leptin on POMC neurons through transient receptor potential channels. Our study identifies Grb10 as a potent leptin sensitizer that contributes to the maintenance of energy homeostasis by enhancing the response of AgRP and POMC neurons to leptin.
Reiner, BC;Zhang, Y;Stein, LM;Perea, ED;Arauco-Shapiro, G;Ben Nathan, J;Ragnini, K;Hayes, MR;Ferraro, TN;Berrettini, WH;Schmidt, HD;Crist, RC;
PMID: 36075888 | DOI: 10.1038/s41398-022-02135-1
Opioid exposure is known to cause transcriptomic changes in the nucleus accumbens (NAc). However, no studies to date have investigated cell type-specific transcriptomic changes associated with volitional opioid taking. Here, we use single nucleus RNA sequencing (snRNAseq) to comprehensively characterize cell type-specific alterations of the NAc transcriptome in rats self-administering morphine. One cohort of male Brown Norway rats was injected with acute morphine (10 mg/kg, i.p.) or saline. A second cohort of rats was allowed to self-administer intravenous morphine (1.0 mg/kg/infusion) for 10 consecutive days. Each morphine-experienced rat was paired with a yoked saline control rat. snRNAseq libraries were generated from NAc punches and used to identify cell type-specific gene expression changes associated with volitional morphine taking. We identified 1106 differentially expressed genes (DEGs) in the acute morphine group, compared to 2453 DEGs in the morphine self-administration group, across 27 distinct cell clusters. Importantly, we identified 1329 DEGs that were specific to morphine self-administration. DEGs were identified in novel clusters of astrocytes, oligodendrocytes, and D1R- and D2R-expressing medium spiny neurons in the NAc. Cell type-specific DEGs included Rgs9, Celf5, Oprm1, and Pde10a. Upregulation of Rgs9 and Celf5 in D2R-expressing neurons was validated by RNAscope. Approximately 85% of all oligodendrocyte DEGs, nearly all of which were associated with morphine taking, were identified in two subtypes. Bioinformatic analyses identified cell type-specific upstream regulatory mechanisms of the observed transcriptome alterations and downstream signaling pathways, including both novel and previously identified molecular pathways. These findings show that volitional morphine taking is associated with distinct cell type-specific transcriptomic changes in the rat NAc and highlight specific striatal cell populations and novel molecular substrates that could be targeted to reduce compulsive opioid taking.
Sushchyk SA, Xi ZX, Wang JB.
PMID: 26903543 | DOI: -
Relapse to drug use is often cited as the major obstacle in overcoming a drug addiction. While relapse can occurs for a myriad of reasons it is well established the complex neuroadaptations, which occur over the course of addiction, are major factors. Cocaine, as a potent dopamine transporter blocker, specifically induces alterations in the dopaminergic as well as other monoaminergic neurotransmissions, which lead to cocaine abuse and dependence. Evidence also suggests that adaptations in the endogenous opioids play important roles in pathophysiology of cocaine addiction. Following this evidence, we investigated a combination medication, levo-tetrahydropalmatine (l-THP) and low dose naltrexone (LDN), targeting primarily dopaminergic and endogenous opioid systems as a cocaine relapse prevention treatment. In the present study Wistar rats were used to assess the effects of l-THP and LDN on cocaine self-administration, drug-seeking behavior during cocaine reinstatement, spontaneous locomotion, and effects on the endogenous opioid system. We determine the combination of l-THP and LDN reduces drug-seeking behavior during reinstatement potently than l-THP alone. Additionally, the combination of l-THP and LDN attenuates the sedative locomotor effect induced by l-THP. Furthermore, we revealed that treatment with the combination of l-THP and LDN has an upregulatory effect on both plasma β-endorphin and hypothalamic POMC that was not observed in l-THP-treated groups. These results suggest that the combination of l-THP and LDN has great potential as an effective and well-tolerated medication for cocaine relapse prevention.
Pandey, M;Zhang, JH;Adikaram, PR;Kittock, CM;Lue, N;Awe, AM;Degner, KN;Jacob, N;Staples, JN;Thomas, R;Kohnen, AB;Ganesan, S;Kabat, J;Chen, CK;Simonds, WF;
PMID: 37219953 | DOI: 10.1172/jci.insight.134685
Mechanical, thermal, and chemical pain sensation is conveyed by primary nociceptors, a subset of sensory afferent neurons. The intracellular regulation of the primary nociceptive signal is an area of active study. We report here the discovery of a Gβ5-dependent regulatory pathway within mechanical nociceptors that restrains anti-nociceptive input from metabotropic GABA-B receptors. In mice with conditional knockout (cKO) of Gnb5 targeted to peripheral sensory neurons, we demonstrate the impairment of mechanical, thermal, and chemical nociception. We further report the specific loss of mechanical nociception in Rgs7-Cre+/-; Gnb5fl/fl mice but not in Rgs9-Cre+/-; Gnb5fl/fl mice, suggesting that Gβ5 might specifically regulate mechanical pain in Rgs7+ cells. Additionally, Gβ5-dependent and Rgs7-associated mechanical nociception is dependent upon GABA-B receptor signaling since both were abolished by treatment with a GABA-B receptor antagonist and since cKO of Gβ5 from sensory cells or from Rgs7+ cells potentiated the analgesic effects of GABA-B agonists. Following activation by the Mrgprd agonist β-alanine, enhanced sensitivity to inhibition by baclofen was observed in primary cultures of Rgs7+ sensory neurons harvested from Rgs7-Cre+/-; Gnb5fl/fl mice. Taken together, these results suggest that the targeted inhibition of Gβ5 function in Rgs7+ sensory neurons might provide specific relief for mechanical allodynia, including that contributing to chronic neuropathic pain, without reliance on exogenous opioids.
Leon, S;Simon, V;Lee, T;Clark, S;Dupuy, N;Le, F;Fioramonti, X;Cota, D;Quarta, C;
| DOI: 10.1530/endoabs.81.oc10.1
The brain plays a crucial role in maintaining the bodys energy needs, a process involving the activity of a group of hypothalamic neurons that express the neuropeptidergic marker pro-opiomelanocortin (POMC). POMC neuronal dysfunction can cause obesity and its associated metabolic sequelae. However, this population of neurons is highly diverse at a molecular and functional level, and whether or not such heterogeneity is implicated in disease establishment or progression has yet to be elucidated. Here, using a lineage-tracing approach in combination with histological and electrophysiological tools, we have characterized POMC neuronal cells at a single-cell resolution in control of lean and diet-induced obese (DIO) mice. Thanks to this genetic strategy, we traced with a reporter protein POMC neurons in adult mice, thus studying these neuronal cells independently from the expression of their main marker POMC. Different histological techniques, including immunohistochemistry, fluorescent in-situ hybridization, and RNAscope, have been used to cluster genetically traced POMC neuronal cells based on their expression of the main marker POMC. These different approaches consistently allowed the identification of a previously uncharacterized sub-population that expresses negligible POMC mRNA and protein levels, which we named Ghost-POMC neurons. We also observed that Ghost-POMC neurons are insensitive to acute nutritional cues (fasting and refeeding) relative to classic POMC positive neurons. Intriguingly, DIO mice presented an increased number of Ghost-POMC neurons relative to control animals. Furthermore, we developed an approach that combines whole-cell patch-clamp of traced POMC neurons with the subsequent molecular profiling of the patched cell by single-cell qPCR. Thanks to this approach, we observed that DIO leads to electrical alterations only in a fraction of POMC neurons expressing undetectable levels of POMC mRNA, which is reminiscent of the Ghost population previously identified by histological techniques. Thus, Ghost-POMC neurons might constitute a novel subpopulation of POMC neurons that undergo dysfunction in response to prolonged dietary cues, perhaps contributing to obesity establishment or progression.
The Orexigenic Force of Olfactory Palatable Food Cues in Rats
Peris-Sampedro, F;Stoltenborg, I;Le May, MV;Sole-Navais, P;Adan, RAH;Dickson, SL;
PMID: 34578979 | DOI: 10.3390/nu13093101
Environmental cues recalling palatable foods motivate eating beyond metabolic need, yet the timing of this response and whether it can develop towards a less palatable but readily available food remain elusive. Increasing evidence indicates that external stimuli in the olfactory modality communicate with the major hub in the feeding neurocircuitry, namely the hypothalamic arcuate nucleus (Arc), but the neural substrates involved have been only partially uncovered. By means of a home-cage hidden palatable food paradigm, aiming to mimic ubiquitous exposure to olfactory food cues in Western societies, we investigated whether the latter could drive the overeating of plain chow in non-food-deprived male rats and explored the neural mechanisms involved, including the possible engagement of the orexigenic ghrelin system. The olfactory detection of a familiar, palatable food impacted upon meal patterns, by increasing meal frequency, to cause the persistent overconsumption of chow. In line with the orexigenic response observed, sensing the palatable food in the environment stimulated food-seeking and risk-taking behavior, which are intrinsic components of food acquisition, and caused active ghrelin release. Our results suggest that olfactory food cues recruited intermingled populations of cells embedded within the feeding circuitry within the Arc, including, notably, those containing the ghrelin receptor. These data demonstrate the leverage of ubiquitous food cues, not only for palatable food searching, but also to powerfully drive food consumption in ways that resonate with heightened hunger, for which the orexigenic ghrelin system is implicated.
Paeger L, Karakasilioti I, Altmüller J, Frommolt P, Brüning J, Kloppenburg P.
PMID: 28632132 | DOI: 10.7554/eLife.25770
In the arcuate nucleus of the hypothalamus (ARH) satiety signaling (anorexigenic) pro-opiomelanocortin (POMC)-expressing and hunger signaling (orexigenic) agouti-related peptide (AgRP)-expressing neurons are key components of the neuronal circuits that control food intake and energy homeostasis. Here, we assessed whether the catecholamine noradrenalin directly modulates the activity of these neurons in mice. Perforated patch clamp recordings showed that noradrenalin changes the activity of these functionally antagonistic neurons in opposite ways, increasing the activity of the orexigenic NPY/AgRP neurons and decreasing the activity of the anorexigenic POMC neurons. Cell type-specific transcriptomics and pharmacological experiments revealed that the opposing effect on these neurons is mediated by the activation of excitatory α1A - and β- adrenergic receptors in NPY/AgRP neurons, while POMC neurons are inhibited via α2A - adrenergic receptors. Thus, the coordinated differential modulation of the key hypothalamic neurons in control of energy homeostasis assigns noradrenalin an important role to promote feeding.
Park S, Aintablian A, Coupe B, Bouret SG
PMID: 32313051 | DOI: 10.1038/s41467-020-15624-y
Obesity is associated with the activation of cellular responses, such as endoplasmic reticulum (ER) stress. Here, we show that leptin-deficient ob/ob mice display elevated hypothalamic ER stress as early as postnatal day 10, i.e., prior to the development of obesity in this mouse model. Neonatal treatment of ob/ob mice with the ER stress-relieving drug tauroursodeoxycholic acid (TUDCA) causes long-term amelioration of body weight, food intake, glucose homeostasis, and pro-opiomelanocortin (POMC) projections. Cells exposed to ER stress often activate autophagy. Accordingly, we report that in vitro induction of ER stress and neonatal leptin deficiency in vivo activate hypothalamic autophagy-related genes. Furthermore, genetic deletion of autophagy in pro-opiomelanocortin neurons of ob/ob mice worsens their glucose homeostasis, adiposity, hyperphagia, and POMC neuronal projections, all of which are ameliorated with neonatal TUDCA treatment. Together, our data highlight the importance of early life ER stress-autophagy pathway in influencing hypothalamic circuits and metabolic regulation
Tissue-specific activation of gene expression by the Synergistic Activation Mediator (SAM) CRISPRa system in mice
Hunt, C;Hartford, SA;White, D;Pefanis, E;Hanna, T;Herman, C;Wiley, J;Brown, H;Su, Q;Xin, Y;Voronin, D;Nguyen, H;Altarejos, J;Crosby, K;Haines, J;Cancelarich, S;Drummond, M;Moller-Tank, S;Malpass, R;Buckley, J;Del Pilar Molina-Portela, M;Droguett, G;Frendewey, D;Chiao, E;Zambrowicz, B;Gong, G;
PMID: 33986266 | DOI: 10.1038/s41467-021-22932-4
CRISPR-based transcriptional activation is a powerful tool for functional gene interrogation; however, delivery difficulties have limited its applications in vivo. Here, we created a mouse model expressing all components of the CRISPR-Cas9 guide RNA-directed Synergistic Activation Mediator (SAM) from a single transcript that is capable of activating target genes in a tissue-specific manner. We optimized Lipid Nanoparticles and Adeno-Associated Virus guide RNA delivery approaches to achieve expression modulation of one or more genes in vivo. We utilized the SAM mouse model to generate a hypercholesteremia disease state that we could bidirectionally modulate with various guide RNAs. Additionally, we applied SAM to optimize gene expression in a humanized Transthyretin mouse model to recapitulate human expression levels. These results demonstrate that the SAM gene activation platform can facilitate in vivo research and drug discovery.
Ratner C, He Z, Grunddal KV, Skov LJ, Hartmann B, Zhang F, Feuchtinger A, Bjerregaard A, Christoffersen C, Tschöp MH, Finan B, DiMarchi RD, Leinninger GM, Williams KW, Clemmensen C, Holst B.
PMID: 30936142 | DOI: 10.2337/db18-1009
Neurotensin, a gut hormone and neuropeptide, increases in circulation after bariatric surgery in rodents and humans and inhibits food intake in mice. However, its potential to treat obesity and the subsequent metabolic dysfunctions have been difficult to assess owing to its short half-life in vivo Here, we demonstrate that a long acting, pegylated analogue of the neurotensin peptide (P-NT) reduces food intake, body weight and adiposity in diet-induced obese (DIO) mice when administered once daily for 6 days. Strikingly, when P-NT was combined with the GLP-1 mimetic liraglutide the two peptides synergized to reduce food intake and body weight relative to each mono-therapy, without inducing a taste aversion. Further, P-NT and liraglutide co-administration improved glycemia and reduced steatohepatitis. Finally, we show that the melanocortin pathway is central for P-NT-induced anorexia and necessary for the full synergistic effect of P-NT and liraglutide combination-therapy. Overall, our data suggest that P-NT and liraglutide combination-therapy could be an enhanced treatment for obesity with improved tolerability compared to liraglutide mono-therapy.