ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cell metabolism
2023 May 02
Chen, W;Mehlkop, O;Scharn, A;Nolte, H;Klemm, P;Henschke, S;Steuernagel, L;Sotelo-Hitschfeld, T;Kaya, E;Wunderlich, CM;Langer, T;Kononenko, NL;Giavalisco, P;Brüning, JC;
PMID: 37075752 | DOI: 10.1016/j.cmet.2023.03.019
Cell.
2016 Jun 16
Branco T, Tozer A, Magnus CJ, Sugino K, Tanaka S, Lee AK, Wood JN, Sternson SM.
PMID: 27315482 | DOI: 10.1016/j.cell.2016.05.019.
Neurons are well suited for computations on millisecond timescales, but some neuronal circuits set behavioral states over long time periods, such as those involved in energy homeostasis. We found that multiple types of hypothalamic neurons, including those that oppositely regulate body weight, are specialized as near-perfect synaptic integrators that summate inputs over extended timescales. Excitatory postsynaptic potentials (EPSPs) are greatly prolonged, outlasting the neuronal membrane time-constant up to 10-fold. This is due to the voltage-gated sodium channel Nav1.7 (Scn9a), previously associated with pain-sensation but not synaptic integration. Scn9a deletion in AGRP, POMC, or paraventricular hypothalamic neurons reduced EPSP duration, synaptic integration, and altered body weight in mice. In vivo whole-cell recordings in the hypothalamus confirmed near-perfect synaptic integration. These experiments show that integration of synaptic inputs over time by Nav1.7 is critical for body weight regulation and reveal a mechanism for synaptic control of circuits regulating long term homeostatic functions.
Cell reports
2022 Nov 29
Zhang, Q;Tang, Q;Purohit, NM;Davenport, JB;Brennan, C;Patel, RK;Godschall, E;Zwiefel, LS;Spano, A;Campbell, JN;Güler, AD;
PMID: 36450244 | DOI: 10.1016/j.celrep.2022.111718
JCI insight
2022 Nov 08
Gaziano, I;Corneliussen, S;Biglari, N;Neuhaus, R;Shen, L;Sotelo-Hitschfeld, T;Klemm, P;Steuernagel, L;De Solis, AJ;Chen, W;Wunderlich, FT;Kloppenburg, P;Brüning, JC;
PMID: 36345942 | DOI: 10.1172/jci.insight.162753
Nature.
2017 Nov 16
Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y, Tirosh I, Beyaz S, Dionne D, Zhang M, Raychowdhury R, Garrett WS, Rozenblatt-Rosen O, Shi HN, Yilmaz O, Xavier RJ, Regev A.
PMID: 29144463 | DOI: 10.1038/nature24489
Intestinal epithelial cells absorb nutrients, respond to microbes, function as a barrier and help to coordinate immune responses. Here we report profiling of 53,193 individual epithelial cells from the small intestine and organoids of mice, which enabled the identification and characterization of previously unknown subtypes of intestinal epithelial cell and their gene signatures. We found unexpected diversity in hormone-secreting enteroendocrine cells and constructed the taxonomy of newly identified subtypes, and distinguished between two subtypes of tuft cell, one of which expresses the epithelial cytokine Tslp and the pan-immune marker CD45, which was not previously associated with non-haematopoietic cells. We also characterized the ways in which cell-intrinsic states and the proportions of different cell types respond to bacterial and helminth infections: Salmonella infection caused an increase in the abundance of Paneth cells and enterocytes, and broad activation of an antimicrobial program; Heligmosomoides polygyrus caused an increase in the abundance of goblet and tuft cells. Our survey highlights previously unidentified markers and programs, associates sensory molecules with cell types, and uncovers principles of gut homeostasis and response to pathogens.
Cell.
2018 Nov 15
Brandt C, Nolte H, Henschke S, Engström Ruud L, Awazawa M, Morgan DA, Gabel P, Sprenger HG, Hess ME, Günther S, Langer T, Rahmouni K, Fenselau H, Krüger M, Brüning JC.
PMID: 30445039 | DOI: 10.1016/j.cell.2018.10.015
Adaptation of liver to the postprandial state requires coordinated regulation of protein synthesis and folding aligned with changes in lipid metabolism. Here we demonstrate that sensory food perception is sufficient to elicit early activation of hepatic mTOR signaling, Xbp1 splicing, increased expression of ER-stress genes, and phosphatidylcholine synthesis, which translate into a rapid morphological ER remodeling. These responses overlap with those activated during refeeding, where they are maintained and constantly increased upon nutrient supply. Sensory food perception activates POMC neurons in the hypothalamus, optogenetic activation of POMC neurons activates hepatic mTOR signaling and Xbp1 splicing, whereas lack of MC4R expression attenuates these responses to sensory food perception. Chemogenetic POMC-neuron activation promotes sympathetic nerve activity (SNA) subserving the liver, and norepinephrine evokes the same responses in hepatocytes in vitro and in liver in vivo as observed upon sensory food perception. Collectively, our experiments unravel that sensory food perception coordinately primes postprandial liver ER adaption through a melanocortin-SNA-mTOR-Xbp1s axis.
Nature metabolism
2022 Oct 01
Steuernagel, L;Lam, BYH;Klemm, P;Dowsett, GKC;Bauder, CA;Tadross, JA;Hitschfeld, TS;Del Rio Martin, A;Chen, W;de Solis, AJ;Fenselau, H;Davidsen, P;Cimino, I;Kohnke, SN;Rimmington, D;Coll, AP;Beyer, A;Yeo, GSH;Brüning, JC;
PMID: 36266547 | DOI: 10.1038/s42255-022-00657-y
Molecular metabolism
2022 Feb 12
Qi, Y;Lee, NJ;Ip, CK;Enriquez, R;Tasan, R;Zhang, L;Herzog, H;
PMID: 35167990 | DOI: 10.1016/j.molmet.2022.101455
Nat Genet.
2017 Mar 20
Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJ, Kong SL, Chua C, Hon LK, Tan WS, Wong M, Choi PJ, Wee LJ, Hillmer AM, Tan IB, Robson P, Prabhakar S.
PMID: 28319088 | DOI: 10.1038/ng.3818
Intratumoral heterogeneity is a major obstacle to cancer treatment and a significant confounding factor in bulk-tumor profiling. We performed an unbiased analysis of transcriptional heterogeneity in colorectal tumors and their microenvironments using single-cell RNA-seq from 11 primary colorectal tumors and matched normal mucosa. To robustly cluster single-cell transcriptomes, we developed reference component analysis (RCA), an algorithm that substantially improves clustering accuracy. Using RCA, we identified two distinct subtypes of cancer-associated fibroblasts (CAFs). Additionally, epithelial-mesenchymal transition (EMT)-related genes were found to be upregulated only in the CAF subpopulation of tumor samples. Notably, colorectal tumors previously assigned to a single subtype on the basis of bulk transcriptomics could be divided into subgroups with divergent survival probability by using single-cell signatures, thus underscoring the prognostic value of our approach. Overall, our results demonstrate that unbiased single-cell RNA-seq profiling of tumor and matched normal samples provides a unique opportunity to characterize aberrant cell states within a tumor.
Neuron
2020 Apr 15
Jais A, Paeger L, Sotelo-Hitschfeld T, Bremser S, Prinzensteiner M, Klemm P, Mykytiuk V, Widdershooven PJM, Vesting AJ, Grzelka K, Min�re M, Cremer AL, Xu J, Korotkova T, Lowell BB, Zeilhofer HU, Backes H, Fenselau H, Wunderlich FT, Kloppenburg P, Br�ning JC
PMID: 32302532 | DOI: 10.1016/j.neuron.2020.03.022
Nature neuroscience
2021 May 17
Biglari, N;Gaziano, I;Schumacher, J;Radermacher, J;Paeger, L;Klemm, P;Chen, W;Corneliussen, S;Wunderlich, CM;Sue, M;Vollmar, S;Klöckener, T;Sotelo-Hitschfeld, T;Abbasloo, A;Edenhofer, F;Reimann, F;Gribble, FM;Fenselau, H;Kloppenburg, P;Wunderlich, FT;Brüning, JC;
PMID: 34002087 | DOI: 10.1038/s41593-021-00854-0
eLife
2022 Jan 19
Yu, H;Rubinstein, M;Low, MJ;
PMID: 35044906 | DOI: 10.7554/eLife.72883
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com