Anesten F, Dalmau Gasull A, Richard JE, Farkas I, Mishra D, Taing L, Zhang FP, Poutanen M, Palsdottir V, Liposits Z, Skibicka KP, Jansson JO.
PMID: 31033078 | DOI: 10.1111/jne.12722
Neuronal circuits involving the central amygdala (CeA) are gaining prominence as important centers for regulation of metabolic functions. As a part of the subcortical food motivation circuitry, CeA is associated with food motivation and hunger. We have previously shown that interleukin-6 (IL-6) can act as a downstream mediator of the metabolic effects of glucagon-like peptide-1 receptor (GLP-1R) stimulation in the brain, but the sites of these effects are largely unknown. We here used the newly generated and validated RedIL6 reporter mouse strain to investigate the presence of IL-6 in the CeA, as well as possible interactions between IL-6 and GLP-1 in this nucleus. IL-6 was present in the CeA, mostly in cells in the medial and lateral parts of this structure, and a majority of IL-6-containing cells also co-expressed GLP-1R. Triple staining showed GLP-1 containing fibers co-staining with synaptophysin close to or overlapping with IL-6 containing cells. GLP-1R stimulation enhanced IL-6 mRNA levels. IL-6 receptor-alpha was found to a large part in neuronal CeA cells. Using electrophysiology, we determined that cells with neuronal properties in the CeA could be rapidly stimulated by IL-6 administration in vitro. Moreover, microinjections of IL-6 into the CeA could slightly reduce food intake in vivo in overnight fasted rats. In conclusion, IL-6 containing cells in the CeA express GLP-1R, are close to GLP-1-containing synapses, and get increased IL-6 mRNA in response to GLP-1R agonist treatment. IL-6, in turn, exerts biological effects in the CeA, possibly via IL-6 receptor-alpha present in this nucleus.
Cakir, B;Tanaka, Y;Kiral, FR;Xiang, Y;Dagliyan, O;Wang, J;Lee, M;Greaney, AM;Yang, WS;duBoulay, C;Kural, MH;Patterson, B;Zhong, M;Kim, J;Bai, Y;Min, W;Niklason, LE;Patra, P;Park, IH;
PMID: 35058453 | DOI: 10.1038/s41467-022-28043-y
Microglia play a role in the emergence and preservation of a healthy brain microenvironment. Dysfunction of microglia has been associated with neurodevelopmental and neurodegenerative disorders. Investigating the function of human microglia in health and disease has been challenging due to the limited models of the human brain available. Here, we develop a method to generate functional microglia in human cortical organoids (hCOs) from human embryonic stem cells (hESCs). We apply this system to study the role of microglia during inflammation induced by amyloid-β (Aβ). The overexpression of the myeloid-specific transcription factor PU.1 generates microglia-like cells in hCOs, producing mhCOs (microglia-containing hCOs), that we engraft in the mouse brain. Single-cell transcriptomics reveals that mhCOs acquire a microglia cell cluster with an intact complement and chemokine system. Functionally, microglia in mhCOs protect parenchyma from cellular and molecular damage caused by Aβ. Furthermore, in mhCOs, we observed reduced expression of Aβ-induced expression of genes associated with apoptosis, ferroptosis, and Alzheimer's disease (AD) stage III. Finally, we assess the function of AD-associated genes highly expressed in microglia in response to Aβ using pooled CRISPRi coupled with single-cell RNA sequencing in mhCOs. In summary, we provide a protocol to generate mhCOs that can be used in fundamental and translational studies as a model to investigate the role of microglia in neurodevelopmental and neurodegenerative disorders.
Journal of Neuroendocrinology
Bakalar, D;Gavrilova, O;Jiang, S;Zhang, H;Roy, S;Williams, S;Liu, N;Wisser, S;Usdin, T;Eiden, L;
| DOI: 10.1111/jne.13286
Neuropeptides may exert trophic effects during development, and then neurotransmitter roles in the developed nervous system. One way to associate peptide-deficiency phenotypes with either role is first to assess potential phenotypes in so-called constitutive knockout mice, and then proceed to specify, regionally and temporally, where and when neuropeptide expression is required to prevent these phenotypes. We have previously demonstrated that the well-known constellation of behavioral and metabolic phenotypes associated with constitutive PACAP knockout mice are accompanied by transcriptomic alterations of two types: those that distinguish the PACAP-null phenotype from wild-type in otherwise quiescent mice (cPRGs), and gene induction that occurs in response to acute environmental perturbation in wild-type mice that do not occur in knock-out mice (aPRGs). Comparing constitutive PACAP knock-out mice to a variety of temporally and regionally specific PACAP knock-outs, we show that the prominent hyperlocomotor phenotype is a consequence of early loss of PACAP expression, is associated with Fos overexpression in hippocampus and basal ganglia, and that a thermoregulatory effect previously shown to be mediated by PACAP-expressing neurons of medial preoptic hypothalamus is independent of PACAP expression in those neurons in adult mice. In contrast, PACAP dependence of weight loss/hypophagia triggered by restraint stress, seen in constitutive PACAP knock-out mice, is phenocopied in mice in which PACAP is deleted after neuronal differentiation. Our results imply that PACAP has a prominent role as a trophic factor early in development determining global central nervous system characteristics, and in addition a second, discrete set of functions as a neurotransmitter in the fully developed nervous system that support physiological and psychological responses to stress.
Journal of Vascular Surgery
Kasashima S, Kawashima A, Zen Y, Ozaki S, Kasashima F, Endo M, Matsumoto Y, Kawakami K.
PMID: 28434701 | DOI: 10.1016/j.jvs.2016.12.140
Abstract
OBJECTIVE:
Immunoglobulin (Ig) G4-related aortic aneurysms (IgG4-AAs) are a special aortic aneurysm among IgG4-related diseases (IgG4-RDs), which are inflammatory and fibrous conditions characterized by tumorous swelling of affected organs and high serum IgG4 concentrations. Recently, IgG4-RD pathogenesis was shown to be associated with T-helper-2 (Th2) and regulatory T (Treg) dominant cytokine production, such as interleukin (IL)-4, IL-10, and IL-13. IL-6 is a key proinflammatory cytokine contributing to lymphocyte and plasmacyte maturation and to atherosclerosis and aneurysm development. We serologically and histopathologically evaluated the cytokine profile in IgG4-AA patients.
METHODS:
Patients with IgG4-AAs (n = 10), non-IgG4-related inflammatory abdominal aortic aneurysms (non-IgG4-AAAs; n = 5), atherosclerotic AAAs (aAAAs; n = 10), and normal aortas without dilatation (n = 10) were examined for serum IL-10, IL-13, and IL-6 levels. Resected aortic tissues were evaluated for cluster of differentiation (CD) 34 (in the endothelial cells and mesenchymal cells) and CD163 (by macrophages) expression using immunohistochemistry and in situ hybridization.
RESULTS:
Serum IL-10 levels were rather higher in IgG4-AA patients (median, 1.3 pg/mL) than in non-IgG4-AAA and aAAA patients and in patients with normal aortas. Elevated serum IL-13 levels relative to standard values were detected in two IgG4-AA patients but not in the other groups. Cells immunopositive for IL-10 and IL-13 were more frequent in IgG4-AAs and significantly correlated with serum IgG4 levels. Serum IL-6 levels (median, 78.5 pg/mL) were also significantly higher in IgG4-AA patients than in non-IgG4-AAA and aAAA patients and control patients with normal aortas (P = .01, P = .001, and P = .004, respectively). They positively correlated with serum IgG4 levels and adventitial thickness, but other cytokines did not. The number of IL-6-immunopositive cells in the adventitia was significantly higher in IgG4-AA patients (median, 17.8/high-power field) than in aAAA patients or patients with normal aortas (P =.001 and P = .002, respectively). In situ hybridization confirmed frequent IL-6 messenger (m)RNA expression in the endothelium, mesenchymal cells, and histiocytes in IgG4-AA adventitia. In the same cells of IgG4-AAs, coexpression of IL-6 and CD34 mRNA or CD163 mRNA was detected.
CONCLUSIONS:
The cytokine profiles of IgG4-AA patients had two characteristics: local IL-10 and IL-13 upregulation in IgG4-AAs was related to Th2 and Treg-predominant cytokine balance, similar to other IgG4-RDs, and IL-6 upregulation in the adventitia was characterized by activated immune reactions in IgG4-AA patients. IL-6 synthesis, through contributions of mesenchymal cells and macrophages in the adventitia, is strongly involved in IgG4-AA pathogenesis or progression, or both.
Abdelmesih, B;Anderson, R;Bambah-Mukku, D;Carta, I;Autry, AE;
PMID: 36476733 | DOI: 10.1038/s41380-022-01902-2
Infant avoidance and aggression are promoted by activation of the Urocortin-3 expressing neurons of the perifornical area of hypothalamus (PeFAUcn3) in male and female mice. PeFAUcn3 neurons have been implicated in stress, and stress is known to reduce maternal behavior. We asked how chronic restraint stress (CRS) affects infant-directed behavior in virgin and lactating females and what role PeFAUcn3 neurons play in this process. Here we show that infant-directed behavior increases activity in the PeFAUcn3 neurons in virgin and lactating females. Chemogenetic inhibition of PeFAUcn3 neurons facilitates pup retrieval in virgin females. CRS reduces pup retrieval in virgin females and increases activity of PeFAUcn3 neurons, while CRS does not affect maternal behavior in lactating females. Inhibition of PeFAUcn3 neurons blocks stress-induced deficits in pup-directed behavior in virgin females. Together, these data illustrate the critical role for PeFAUcn3 neuronal activity in mediating the impact of chronic stress on female infant-directed behavior.
Yoshimoto, S;Morita, H;Okamura, K;Hiraki, A;Hashimoto, S;
| DOI: 10.1016/j.labinv.2022.100023
Ameloblastoma (AB) is the most common benign, epithelial odontogenic tumor that occurs in the jawbone. AB is a slow-growing, benign epithelial tumor but shows locally invasive growth, with bone resorption or recurrence if not adequately resected. From these points of view, understanding the mechanism of AB-induced bone resorption is necessary for better clinical therapy and improving patients’ quality of life. In bone resorption, osteoclasts play critical roles, and RANKL is a pivotal regulator of osteoclastogenesis. However, the source of RANKL-expressing cells in the AB tumor microenvironment is controversial, and the mechanism of osteoclastogenesis in AB progression is not fully understood. In this study, we investigated the distribution of the RNA expression of RANKL in AB specimens. We found that PDGFRα- and S100A4-positive stromal fibroblasts expressed RANKL in the AB tumor microenvironment. Moreover, we analyzed the mechanisms of osteoclastogenesis in the AB tumor microenvironment using the human AB cell line AM-1 and a human primary periodontal ligament fibroblast cells. The results of histopathologic and in vitro studies clarified that the interaction between AB cells and stromal fibroblasts upregulated IL-6 expression and that AB cells induced RANKL expression in stromal fibroblasts and consequent osteoclastogenesis in AB progression.
Gupta M, Babic A, Beck AH, Terry K.
PMID: - | DOI: 10.1016/j.humpath.2016.03.006
Inflammatory cytokines, like tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), are elevated in ovarian cancer. Differences in cytokine expression by histologic subytpe or ovarian cancer risk factors can provide useful insight into ovarian cancer risk and etiology. We used ribonucleic acid (RNA) in-situ hybridization to assess TNF-α and IL-6 expression on tissue microarray slides from 78 epithelial ovarian carcinomas (51 serous, 12 endometrioid, 7 clear cell, 2 mucinous, 6 other) from a population-based case control study. Cytokine expression was scored semi-quantitatively and odds ratios (OR) and 95% confidence intervals (CI) were calculated using polytomous logistic regression. TNF-α was expressed in 46% of the tumors while sparse IL-6 expression was seen only 18% of the tumors. For both markers, expression was most common in high grade serous carcinomas followed by endometrioid carcinomas. Parity was associated with a reduced risk of TNF-α positive (OR = 0.3, 95% CI: 0.1-0.7 for 3 or more children versus none) but not TNF-α negative tumors (p-heterogeneity = 0.02). In contrast, current smoking was associated with a nearly three fold increase in risk of TNF-α negative (OR = 2.8, 95% CI: 1.2, 6.6) but not TNF-α positive tumors (p-heterogeneity = 0.06). Our data suggests that TNF-α expression in ovarian carcinoma varies by histologic subtype and provides some support for the role of inflammation in ovarian carcinogenesis. The novel associations detected in our study need to be validated in a larger cohort of patients in future studies.
Porcu, A;Nilsson, A;Booreddy, S;Barnes, SA;Welsh, DK;Dulcis, D;
PMID: 36054362 | DOI: 10.1126/sciadv.abn9867
Seasonal changes in day length (photoperiod) affect numerous physiological functions. The suprachiasmatic nucleus (SCN)-paraventricular nucleus (PVN) axis plays a key role in processing photoperiod-related information. Seasonal variations in SCN and PVN neurotransmitter expression have been observed in humans and animal models. However, the molecular mechanisms by which the SCN-PVN network responds to altered photoperiod is unknown. Here, we show in mice that neuromedin S (NMS) and vasoactive intestinal polypeptide (VIP) neurons in the SCN display photoperiod-induced neurotransmitter plasticity. In vivo recording of calcium dynamics revealed that NMS neurons alter PVN network activity in response to winter-like photoperiod. Chronic manipulation of NMS neurons is sufficient to induce neurotransmitter switching in PVN neurons and affects locomotor activity. Our findings reveal previously unidentified molecular adaptations of the SCN-PVN network in response to seasonality and the role for NMS neurons in adjusting hypothalamic function to day length via a coordinated multisynaptic neurotransmitter switching affecting behavior.
Hilscher, MM;Langseth, CM;Kukanja, P;Yokota, C;Nilsson, M;Castelo-Branco, G;
PMID: 35610641 | DOI: 10.1186/s12915-022-01325-z
Oligodendrocytes are glial cells that support and insulate axons in the central nervous system through the production of myelin. Oligodendrocytes arise throughout embryonic and early postnatal development from oligodendrocyte precursor cells (OPCs), and recent work demonstrated that they are a transcriptional heterogeneous cell population, but the regional and functional implications of this heterogeneity are less clear. Here, we apply in situ sequencing (ISS) to simultaneously probe the expression of 124 marker genes of distinct oligodendrocyte populations, providing comprehensive maps of the corpus callosum, cingulate, motor, and somatosensory cortex in the brain, as well as gray matter (GM) and white matter (WM) regions in the spinal cord, at postnatal (P10), juvenile (P20), and young adult (P60) stages. We systematically compare the abundances of these populations and investigate the neighboring preference of distinct oligodendrocyte populations.We observed that oligodendrocyte lineage progression is more advanced in the juvenile spinal cord compared to the brain, corroborating with previous studies. We found myelination still ongoing in the adult corpus callosum while it was more advanced in the cortex. Interestingly, we also observed a lateral-to-medial gradient of oligodendrocyte lineage progression in the juvenile cortex, which could be linked to arealization, as well as a deep-to-superficial gradient with mature oligodendrocytes preferentially accumulating in the deeper layers of the cortex. The ISS experiments also exposed differences in abundances and population dynamics over time between GM and WM regions in the brain and spinal cord, indicating regional differences within GM and WM, and we found that neighboring preferences of some oligodendroglia populations are altered from the juvenile to the adult CNS.Overall, our ISS experiments reveal spatial heterogeneity of oligodendrocyte lineage progression in the brain and spinal cord and uncover differences in the timing of oligodendrocyte differentiation and myelination, which could be relevant to further investigate functional heterogeneity of oligodendroglia, especially in the context of injury or disease.
Patel, TN;Caiola, HO;Mallari, OG;Blandino, KL;Goldenthal, AR;Dymecki, SM;Rood, BD;
PMID: 35654294 | DOI: 10.1016/j.neuroscience.2022.05.032
Social interactions play an important role in our daily lives and can profoundly impact our health for better and worse. To better understand the neural circuitry underlying social behavior, we focused on neural circuits involving vasopressin neurons of the bed nucleus of the stria terminalis (BNST) and serotonin neurons of the dorsal raphe (DR). Previous research shows that BNST vasopressin neurons are activated in male mice by interaction with a female and that vasopressin indirectly excites serotonin neurons. In our studies, we tested the hypothesis that specific social interactions would also activate neurons in the DR, specifically vasopressin 1A receptor (Avpr1a)-expressing neurons, which may be direct targets of the BNST vasopressin neurons. Using in separate experiments immunohistochemistry and in situ hybridization, we found that male and female subjects exposed to a female conspecific show activation in the DR, and the activated neurons include populations of Avpr1a-expressing and other non-serotonergic, non-Avpr1a neurons in roughly equal numbers. Avpr1a neurons in the DR constitute a largely undocumented neuron population. Electrophysiological data suggest that most DR Avpr1a neurons behave like fast spiking interneurons found in other brain regions. Examination of RNAseq and in situ hybridization data suggests that there are glutamatergic, GABAergic, and serotonergic subtypes of Avpr1a neurons in the DR. Together our data support a model in which a subset of vasopressin-responsive interneurons in the DR may relay stimulus specific social signals from the forebrain BNST to the serotonergic DR system, which could help direct prosocial stimulus specific behavioral responses.
Sawada R, Ku Y, Akita M, Otani K, Fujikura K, Itoh T, Ajiki T, Fukumoto T, Kakeji Y, Zen Y.
PMID: 29675965 | DOI: 10.1111/his.13633
Abstract
BACKGROUND & AIMS:
The present study aimed to elucidate the clinicopathological significance of IL-6 and IL-33 expression in intrahepatic cholangiocarcinomas (iCCAs) and perihilar cholangiocarcinomas (pCCAs).
METHODS:
IL-6 and IL-33 mRNA expression was examined in iCCAs (n=55) and pCCAs (n=32) using quantitative real-time PCR and a highly sensitive in situ hybridization protocol (RNAscope™ ), and expression values were correlated with clinicopathological features. According to a recently proposed classification scheme, iCCAs were separated into small- (n=33) and large-duct types (n=22).
RESULTS:
IL-6 and IL-33 expression levels were higher in large-duct iCCAs and pCCAs than in small-duct iCCAs, with a positive correlation between the values of these cytokines. In double in situ hybridization/immunostaining, IL-6 mRNA was expressed in actin-positive (myo)fibroblasts, while IL-33 was mainly produced by CD31-positive endothelial cells. Based on the average expression value as a cut-off point, cases were classified as IL-6high and IL-6low or IL-33high and IL-33low . In the combined cohort of large-duct iCCAs and pCCAs, IL-6high and IL-6low cholangiocarcinomas shared many features, while IL-33high cases had less aggressive characteristics than IL-33low cases as evidenced by lower tumour marker concentrations, smaller tumour sizes, less common vascular invasion, lower pT stages, and higher lymphocyte-to-monocyte ratios in blood. KRAS mutations were slightly less common in IL-33high cases than in IL-33low cancers (9% vs 29%; p=0.061). The strong expression of IL-33 in tissue appeared to be an independent favourable prognostic factor.
CONCLUSIONS:
IL-33high cholangiocarcinomas may represent a unique, less aggressive carcinogenetic process of the large bile ducts.
Key role for hypothalamic interleukin-6 in food-motivated behavior and body weight regulation
López-Ferreras, L;Longo, F;Richard, J;Eerola, K;Shevchouk, O;Tuzinovic, M;Skibicka, K;
| DOI: 10.1016/j.psyneuen.2021.105284
The pro-inflammatory role of interleukin-6 (IL-6) is well-characterized. Blockade of IL-6, by Tocilizumab, is used in patients with rheumatoid arthritis and those diagnosed with cytokine storm. However, brain-produced IL-6 has recently emerged as a critical mediator of gut/adipose communication with the brain. Central nervous system (CNS) IL-6 is engaged by peripheral and central signals regulating energy homeostasis. IL-6 is critical for mediating hypophagia and weight loss effects of a GLP-1 analog, exendin-4, a clinically utilized drug. However, neuroanatomical substrates and behavioral mechanisms of brain IL-6 energy balance control remain poorly understood. We propose that the lateral hypothalamus (LH) is an IL-6-harboring brain region, key to food intake and food reward control. Microinjections of IL-6 into the LH reduced chow and palatable food intake in male rats. In contrast, female rats responded with reduced motivated behavior for sucrose, measured by the progressive ratio operant conditioning test, a behavioral mechanism previously not linked to IL-6. To test whether IL-6, produced in the LH, is necessary for ingestive and motivated behaviors, and body weight homeostasis, virogenetic knockdown by infusion of AAV-siRNA-IL6 into the LH was utilized. Attenuation of LH IL-6 resulted in a potent increase in sucrose-motivated behavior, without any effect on ingestive behavior or body weight in female rats. In contrast, the treatment did not affect any parameters measured (chow intake, sucrose-motivated behavior, locomotion, and body weight) in chow-fed males. However, when challenged with a high-fat/high-sugar diet, the male LH IL-6 knockdown rats displayed rapid weight gain and hyperphagia. Together, our data suggest that LH-produced IL-6 is necessary and sufficient for ingestive behavior and weight homeostasis in male rats. In females, IL-6 in the LH plays a critical role in food-motivated, but not ingestive behavior control or weight regulation. Thus, collectively these data support the idea that brain-produced IL-6 engages the hypothalamus to control feeding behavior.