Warren, A;Porter, RM;Reyes-Castro, O;Ali, MM;Marques-Carvalho, A;Kim, HN;Gatrell, LB;Schipani, E;Nookaew, I;O'Brien, CA;Morello, R;Almeida, M;
PMID: 37330524 | DOI: 10.1038/s41467-023-39392-7
NAD is an essential co-factor for cellular energy metabolism and multiple other processes. Systemic NAD+ deficiency has been implicated in skeletal deformities during development in both humans and mice. NAD levels are maintained by multiple synthetic pathways but which ones are important in bone forming cells is unknown. Here, we generate mice with deletion of Nicotinamide Phosphoribosyltransferase (Nampt), a critical enzyme in the NAD salvage pathway, in all mesenchymal lineage cells of the limbs. At birth, NamptΔPrx1 exhibit dramatic limb shortening due to death of growth plate chondrocytes. Administration of the NAD precursor nicotinamide riboside during pregnancy prevents the majority of in utero defects. Depletion of NAD post-birth also promotes chondrocyte death, preventing further endochondral ossification and joint development. In contrast, osteoblast formation still occurs in knockout mice, in line with distinctly different microenvironments and reliance on redox reactions between chondrocytes and osteoblasts. These findings define a critical role for cell-autonomous NAD homeostasis during endochondral bone formation.
The induction of preterm labor in rhesus macaques is determined by the strength of immune response to intrauterine infection
Cappelletti, M;Presicce, P;Feiyang, M;Senthamaraikannan, P;Miller, LA;Pellegrini, M;Sim, MS;Jobe, AH;Divanovic, S;Way, SS;Chougnet, CA;Kallapur, SG;
PMID: 34495952 | DOI: 10.1371/journal.pbio.3001385
Intrauterine infection/inflammation (IUI) is a major contributor to preterm labor (PTL). However, IUI does not invariably cause PTL. We hypothesized that quantitative and qualitative differences in immune response exist in subjects with or without PTL. To define the triggers for PTL, we developed rhesus macaque models of IUI driven by lipopolysaccharide (LPS) or live Escherichia coli. PTL did not occur in LPS challenged rhesus macaques, while E. coli-infected animals frequently delivered preterm. Although LPS and live E. coli both caused immune cell infiltration, E. coli-infected animals showed higher levels of inflammatory mediators, particularly interleukin 6 (IL-6) and prostaglandins, in the chorioamnion-decidua and amniotic fluid (AF). Neutrophil infiltration in the chorio-decidua was a common feature to both LPS and E. coli. However, neutrophilic infiltration and IL6 and PTGS2 expression in the amnion was specifically induced by live E. coli. RNA sequencing (RNA-seq) analysis of fetal membranes revealed that specific pathways involved in augmentation of inflammation including type I interferon (IFN) response, chemotaxis, sumoylation, and iron homeostasis were up-regulated in the E. coli group compared to the LPS group. Our data suggest that the intensity of the host immune response to IUI may determine susceptibility to PTL.
Gu, X;Zhang, YZ;O'Malley, JJ;De Preter, CC;Penzo, M;Hoon, MA;
PMID: 36894654 | DOI: 10.1038/s41593-023-01268-w
Supraspinal brain regions modify nociceptive signals in response to various stressors including stimuli that elevate pain thresholds. The medulla oblongata has previously been implicated in this type of pain control, but the neurons and molecular circuits involved have remained elusive. Here we identify catecholaminergic neurons in the caudal ventrolateral medulla that are activated by noxious stimuli in mice. Upon activation, these neurons produce bilateral feed-forward inhibition that attenuates nociceptive responses through a pathway involving the locus coeruleus and norepinephrine in the spinal cord. This pathway is sufficient to attenuate injury-induced heat allodynia and is required for counter-stimulus induced analgesia to noxious heat. Our findings define a component of the pain modulatory system that regulates nociceptive responses.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
Yin, W;Swanson, SP;Biltz, RG;Goodman, EJ;Gallagher, NR;Sheridan, JF;Godbout, JP;
PMID: 36104533 | DOI: 10.1038/s41386-022-01434-x
Chronic stress may precipitate psychiatric disorders including anxiety. We reported that Repeated Social Defeat (RSD) in mice increased accumulation of inflammatory monocytes within the brain vasculature, which corresponded with increased interleukin (IL)-1 Receptor 1-mediated activation of endothelia, and augmented anxiety-like behavior. One unknown, however, is the role of immune-activated endothelia in regulating the physiological and behavioral responses to social stress. Thus, we sought to determine the RNA profile of activated endothelia and delineate the pathways by which these endothelia communicate within the brain to influence key responses to social stress. First, endothelial-specific RiboTag mice were exposed to RSD and brain endothelial mRNA profiles from the whole brain and prefrontal cortex were determined using RNAseq. RSD increased expression of cell adhesion molecules (Icam1), inflammatory genes (Lrg1, Lcn2, Ackr1, Il1r1), and cyclooxygenase-2 (Ptgs2/COX-2). In studies with IL-1R1KO mice, there was clear dependence on IL-1R1 on endothelia-associated transcripts including Lrg1, Icam1, Lcn2. Moreover, prostaglandin (PG)E2 was increased in the brain after RSD and Ptgs2 was localized to endothelia, especially within the hypothalamus. Next, a selective COX-2 inhibitor, Celecoxib (CCB), was used with social stress. RSD increased PGE2 in the brain and this was abrogated by CCB. Moreover, CCB reduced RSD-induced Hypothalamic-Pituitary-Adrenal (HPA) axis activation with attenuation of hypothalamic paraventricular neuron activation, hypothalamic Crh expression, and corticosterone in circulation. Production, release, and accumulation of inflammatory monocytes after RSD was COX-2 independent. Nonetheless, CCB blocked anxiety-like behavior in response to RSD. Collectively, social stress stimulated specific endothelia RNA profiles associated with increased cell adhesion, IL-1 and prostaglandin signaling, HPA axis activation, and anxiety.
Aikawa S, Kano K, Inoue A, Wang J, Saigusa D, Nagamatsu T, Hirota Y, Fujii T, Tsuchiya S, Taketomi Y, Sugimoto Y, Murakami M, Arita M, Kurano M, Ikeda H, Yatomi Y, Chun J, Aoki J.
PMID: 28588064 | DOI: 10.15252/embj.201696290
During pregnancy, up-regulation of heparin-binding (HB-) EGF and cyclooxygenase-2 (COX-2) in the uterine epithelium contributes to decidualization, a series of uterine morphological changes required for placental formation and fetal development. Here, we report a key role for the lipid mediator lysophosphatidic acid (LPA) in decidualization, acting through its G-protein-coupled receptor LPA3 in the uterine epithelium. Knockout of Lpar3 or inhibition of the LPA-producing enzyme autotaxin (ATX) in pregnant mice leads to HB-EGF and COX-2 down-regulation near embryos and attenuates decidual reactions. Conversely, selective pharmacological activation of LPA3 induces decidualization via up-regulation of HB-EGF and COX-2. ATX and its substrate lysophosphatidylcholine can be detected in the uterine epithelium and in pre-implantation-stage embryos, respectively. Our results indicate that ATX-LPA-LPA3 signaling at the embryo-epithelial boundary induces decidualization via the canonical HB-EGF and COX-2 pathways.
Griffiths, MJ;Marshall, SA;Cousins, FL;Alesi, LR;Higgins, J;Giridharan, S;Sarma, UC;Menkhorst, E;Zhou, W;Care, AS;Donoghue, JF;Holdsworth-Carson, SJ;Rogers, PA;Dimitriadis, E;Gargett, CE;Robertson, SA;Winship, AL;Hutt, KJ;
PMID: 36946464 | DOI: 10.1172/jci.insight.163704
Female cancer survivors are significantly more likely to experience infertility than the general population. It is well established that chemotherapy and radiotherapy can damage the ovary and compromise fertility, yet the ability of cancer treatments to induce uterine damage, and the underlying mechanisms, have been understudied. Here, we show that in mice total-body γ-irradiation (TBI) induced extensive DNA damage and apoptosis in uterine cells. We then transferred healthy donor embryos into ovariectomized adolescent female mice that were previously exposed to TBI to study the impacts of radiotherapy on the uterus independent from effects to ovarian endocrine function. Following TBI, embryo attachment and implantation were unaffected, but fetal resorption was evident at midgestation in 100% of dams, suggesting failed placental development. Consistent with this hypothesis, TBI impaired the decidual response in mice and primary human endometrial stromal cells. TBI also caused uterine artery endothelial dysfunction, likely preventing adequate blood vessel remodeling in early pregnancy. Notably, when pro-apoptotic protein Puma-deficient (Puma-/-) mice were exposed to TBI, apoptosis within the uterus was prevented, and decidualization, vascular function, and pregnancy were restored, identifying PUMA-mediated apoptosis as a key mechanism. Collectively, these data show that TBI damages the uterus and compromises pregnancy success, suggesting that optimal fertility preservation during radiotherapy may require protection of both the ovaries and uterus. In this regard, inhibition of PUMA may represent a potential fertility preservation strategy.
bioRxiv : the preprint server for biology
Su, Y;Xu, J;Zhu, Z;Yu, H;Nudell, V;Dash, B;Moya, EA;Ye, L;Nimmerjahn, A;Sun, X;
PMID: 36778350 | DOI: 10.1101/2023.02.04.527145
Chronic exposure of the lung to irritants such as allergen is a primary cause of asthma characterized by exaggerated airway constriction, also called hyperreactivity, which can be life-threatening. Aside from immune cells, vagal sensory neurons are important for airway hyperreactivity 1â€"4 . However, the identity and signature of the downstream nodes of this adaptive circuit remains poorly understood. Here we show that a single population of Dbh + neurons in the nucleus of the solitary tract (nTS) of the brainstem, and downstream neurons in the nucleus ambiguous (NA), are both necessary and sufficient for chronic allergen-induced airway hyperreactivity. We found that repeated exposures of mice to inhaled allergen activates nTS neurons in a mast cell-, interleukin 4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA-seq of the nTS at baseline and following allergen challenges reveals that a Dbh + population is preferentially activated. Ablation or chemogenetic inactivation of Dbh + nTS neurons blunted, while chemogenetic activation promoted hyperreactivity. Viral tracing indicates that Dbh + nTS neurons, capable of producing norepinephrine, project to the NA, and NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that then directly drive airway constriction. Focusing on transmitters, delivery of norepinephrine antagonists to the NA blunted allergen-induced hyperreactivity. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. The knowledge opens the possibility of targeted neural modulation as an approach to control refractory allergen-induced airway constriction.
Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism
Borgmann, D;Ciglieri, E;Biglari, N;Brandt, C;Cremer, AL;Backes, H;Tittgemeyer, M;Wunderlich, FT;Brüning, JC;Fenselau, H;
PMID: 34043943 | DOI: 10.1016/j.cmet.2021.05.002
Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.