Ritter, JM;Wilson, TM;Gary, JM;Seixas, JN;Martines, RB;Bhatnagar, J;Bollweg, BC;Lee, E;Estetter, L;Silva-Flannery, L;Bullock, HA;Towner, JS;Cossaboom, CM;Wendling, NM;Amman, BR;Harvey, RR;Taylor, D;Rettler, H;Barton Behravesh, C;Zaki, SR;
PMID: 35229669 | DOI: 10.1177/03009858221079665
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes respiratory disease in mink similar to human COVID-19. We characterized the pathological findings in 72 mink from US farms with SARS-CoV-2 outbreaks, localized SARS-CoV-2 and its host cellular receptor angiotensin-converting enzyme 2 (ACE2) in mink respiratory tissues, and evaluated the utility of various test methods and specimens for SARS-CoV-2 detection in necropsy tissues. Of SARS-CoV-2-positive animals found dead, 74% had bronchiolitis and diffuse alveolar damage (DAD). Of euthanized SARS-CoV-2-positive animals, 72% had only mild interstitial pneumonia or minimal nonspecific lung changes (congestion, edema, macrophages); similar findings were seen in SARS-CoV-2-negative animals. Suppurative rhinitis, lymphocytic perivascular inflammation in the lungs, and lymphocytic infiltrates in other tissues were common in both SARS-CoV-2-positive and SARS-CoV-2-negative animals. In formalin-fixed paraffin-embedded (FFPE) upper respiratory tract (URT) specimens, conventional reverse transcription-polymerase chain reaction (cRT-PCR) was more sensitive than in situ hybridization (ISH) or immunohistochemistry (IHC) for detection of SARS-CoV-2. FFPE lung specimens yielded less detection of virus than FFPE URT specimens by all test methods. By IHC and ISH, virus localized extensively to epithelial cells in the nasal turbinates, and prominently within intact epithelium; olfactory mucosa was mostly spared. The SARS-CoV-2 receptor ACE2 was extensively detected by IHC within turbinate epithelium, with decreased detection in lower respiratory tract epithelium and alveolar macrophages. This study expands on the knowledge of the pathology and pathogenesis of natural SARS-CoV-2 infection in mink and supports their further investigation as a potential animal model of SARS-CoV-2 infection in humans.
Positive Retrospective SARS-CoV-2 Testing in a Case of Acute Respiratory Distress Syndrome of Unknown Etiology
Case reports in pulmonology
Burkett, A;McElwee, S;Margaroli, C;Bajpai, P;Elkholy, A;Manne, U;Wille, K;Benson, P;
PMID: 34513107 | DOI: 10.1155/2021/5484239
In order to elucidate the cause of acute respiratory distress syndrome of unknown etiology in a pre-pandemic patient, molecular techniques were used for detection of SARS-CoV-2. We used a SARS-CoV-2 nucleocapsid protein immunofluorescence stain to retrospectively identify an individual with diffuse alveolar damage on autopsy histology who had negative respiratory virus panel results in February, 2020, in Birmingham, Alabama. In situ hybridization for SARS-CoV-2 RNA revealed evidence of widespread multiorgan SARS-CoV-2 infection. This death antecedes the first reported death of a State of Alabama resident diagnosed with SARS-CoV-2 by 26 days.
Rabbani, MY;Rappaport, J;Gupta, MK;
PMID: 35203260 | DOI: 10.3390/cells11040611
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is an extremely contagious disease whereby the virus damages the host's respiratory tract via entering through the ACE2 receptor. Cardiovascular disorder is being recognized in the majority of COVID-19 patients; yet, the relationship between SARS-CoV-2 and heart failure has not been established. In the present study, SARS-CoV-2 infection was induced in the monkey model. Thereafter, heart tissue samples were collected, and pathological changes were analyzed in the left ventricular tissue by hematoxylin and eosin, trichrome, and immunohistochemical staining specific to T lymphocytes and macrophages. The findings revealed that SARS-CoV-2 infection induces several pathological changes in the heart, which cause cardiomyocyte disarray, mononuclear infiltrates of inflammatory cells, and hypertrophy. Furthermore, collagen-specific staining showed the development of cardiac fibrosis in the interstitial and perivascular regions in the hearts of infected primates. Moreover, the myocardial tissue samples displayed multiple foci of inflammatory cells positive for T lymphocytes and macrophages within the myocardium. These findings suggest the progression of the disease, which can lead to the development of severe complications, including heart failure. Additionally, SARS-CoV-2 antigen staining detected the presence of virus particles in the myocardium. Thus, we found that SARS-CoV-2 infection is characterized by an exaggerated inflammatory immune response in the heart, which possibly contributes to myocardial remodeling and subsequent fibrosis.
Neutrophil-epithelial interactions augment infectivity and pro-inflammatory responses to SARS-CoV-2 infection
bioRxiv : the preprint server for biology
Calvert, BA;Quiroz, EJ;Lorenzana, Z;Doan, N;Kim, S;Senger, CN;Wallace, WD;Salomon, MP;Henley, JE;Ryan, AL;
PMID: 34401877 | DOI: 10.1101/2021.08.09.455472
In response to viral infection, neutrophils release inflammatory mediators as part of the innate immune response, contributing to pathogen clearance through virus internalization and killing. Pre-existing co-morbidities, correlating to incidence of severe COVID-19, are associated with chronic airway neutrophilia and examination of COVID-19 lung tissue revealed a series of epithelial pathologies associated with infiltration and activation of neutrophils. To determine the impact of neutrophil-epithelial interactions on the infectivity and inflammatory response to SARS-CoV-2 infection, we developed a co-culture model of airway neutrophilia. We discovered that SARS-CoV-2 infection of the airway epithelium alone does not result in a notable release of pro-inflammatory cytokines, however in the presence of neutrophils, the inflammatory response is both polarized and significantly augmented, epithelial barrier integrity in impaired and viral load of the airway epithelium increased. This study reveals a key role for neutrophil-epithelial interactions in determining inflammation, infectivity, and outcomes in response to SARS-CoV-2 infection.We have developed a model to study neutrophil-epithelial interactions which better reflects the in vivo situation than monocultures Neutrophils significantly augment SARS-CoV-2 mediated, pro-inflammatory cytokine release from the epithelium indicating a key interactionSARS-CoV-2 infection leads to a polarized inflammatory response in differentiated airway epitheliumDisruption of the epithelial barrier via addition of neutrophils or cytokines leads to increased infectionStudy reveals a key role for neutrophil-epithelial interactions in determining outcome/infectivity.
Emerging microbes & infections
Li, C;Song, W;Chan, JF;Chen, Y;Liu, F;Ye, Z;Lam, AH;Cai, J;Lee, AC;Wong, BH;Chu, H;Lung, DC;Sridhar, S;Chen, H;Zhang, AJ;Yuen, KY;
PMID: 37122119 | DOI: 10.1080/22221751.2023.2207678
SummaryIntranasal infection of newly-weaned Syrian hamsters by SARS-CoV-2 Omicron variants can lead to brain inflammation and neuron degeneration with detectable low viral load and sparse expression of viral nucleoprotein.AbstractChildren infected by SARS-CoV-2 Omicron variant may develop neurological complications. To study the pathogenesis in the growing brain, we intranasally challenged newly-weaned or mature hamsters with SARS-CoV-2 Omicron BA.2, BA.5 or Delta variant. Omicron BA.2 and Delta infection produced a significantly lower viral load in the lung tissues of newly-weaned than mature hamsters despite comparable histopathological damages. Newly-weaned hamsters had higher brain viral load, significantly increased cerebrospinal fluid concentration of TNF-α and CXCL10 and inflammatory damages including mild meningitis and parenchymal vascular congestion, despite sparse expression of nucleocapsid antigen in brain cells. Furthermore, 63.6% (28/44) of all SARS-CoV-2 infected newly-weaned hamsters showed microgliosis in olfactory bulb, cerebral cortex and hippocampus. In infected mature hamsters, microgliosis were observed mainly in olfactory bulb and olfactory cortex of 35.3% (12/34) of their brains. Neuronal degeneration was found in 75% (33/44) of newly-weaned hamsters affecting multiple regions including olfactory bulb, olfactory cortex, midbrain cortex and hippocampus, while such changes were mainly observed in hippocampus of mature hamsters. Importantly, similar brain histopathology was observed in Omicron BA.5 infected newly-weaned hamsters. Our study suggested that SARS-CoV-2 may affect the brain at young age. This kind of brain involvement and histological changes are not virus variant or subvariant specific. Incidentally, moderate amount of eosinophilic infiltration was observed in the mucosa of nasal turbinate and trachea of newly-weaned hamsters infected by Omicron BA.2 and BA.5 but not Delta variant. This histological finding is consistent with the higher incidence of laryngotracheobronchitis in young children infected by the Omicron variant.
Annals of Diagnostic Pathology
Mezache, L;Nuovo, G;Suster, D;Tili, E;Awad, H;Radwański, P;Veeraraghavan, R;
| DOI: 10.1016/j.anndiagpath.2022.151983
Cardiac manifestations are common in severe COVID-19. This study compared the histologic, viral, and molecular findings in cardiac tissue in fatal COVID-19 (n = 11) and controls (n = 11). In situ hybridization (SARS-CoV2 RNA) and immunohistochemistry for viral proteins and the host response were quantified for the samples and compared with qRTPCR and Western blot data. Control hearts showed a high resident population of macrophages that had variable ACE2 expression. Cardiac ACE2 expression was 10× greater in the heart tissues of cases and controls with obesity or type II diabetes. Multifocal endothelial cell swelling and degeneration, perivascular edema plus microvascular thrombi were unique to the cases. SARS-CoV2 RNA and nucleocapsid protein were rarely detected in situ in any COVID-19 heart. However, in each case abundant SARS-CoV-2 spike protein was evident. Co-expression experiments showed that the spike protein localized mostly to the ACE2+ interstitial macrophages/pericytes that were activated as evidenced by increased IL6 and TNFα expression. Western blots confirmed the presence of the viral spike protein, but not the nucleocapsid protein, in the cardiac homogenates. The intercalated disc proteins connexin 43, the primary cardiac gap junction protein, and NaV1.5, the predominant cardiac sodium channel, each showed marked lateral migration in the myocytes in the cases, which would increase the risk of reentrant arrhythmias. It is concluded that the viral spike protein, endocytosed by macrophages/pericytes, can induce a myocarditis with the possibility of conduction dysfunction due to abnormal localization of key intercalated disc proteins.
SARS-CoV-2, myocardial injury and inflammation: insights from a large clinical and autopsy study
Clinical research in cardiology : official journal of the German Cardiac Society
Dal Ferro, M;Bussani, R;Paldino, A;Nuzzi, V;Collesi, C;Zentilin, L;Schneider, E;Correa, R;Silvestri, F;Zacchigna, S;Giacca, M;Metra, M;Merlo, M;Sinagra, G;
PMID: 34282465 | DOI: 10.1007/s00392-021-01910-2
Despite growing evidence about myocardial injury in hospitalized COronaVIrus Disease 2019 (COVID-19) patients, the mechanism behind this injury is only poorly understood and little is known about its association with SARS-CoV-2-mediated myocarditis. Furthermore, definite evidence of the presence and role of SARS-CoV-2 in cardiomyocytes in the clinical scenario is still lacking.We histologically characterized myocardial tissue of 40 patients deceased with severe SARS-CoV-2 infection during the first wave of the pandemic. Clinical data were also recorded and analyzed. In case of findings supportive of myocardial inflammation, histological analysis was complemented by RT-PCR and immunohistochemistry for SARS-CoV-2 viral antigens and in situ RNA hybridization for the detection of viral genomes.Both chronic and acute myocardial damage was invariably present, correlating with the age and comorbidities of our population. Myocarditis of overt entity was found in one case (2.5%). SARS-CoV-2 genome was not found in the cardiomyocytes of the patient with myocarditis, while it was focally and negligibly present in cardiomyocytes of patients with known viral persistence in the lungs and no signs of myocardial inflammation. The presence of myocardial injury was not associated with myocardial inflammatory infiltrates.In this autopsy cohort of COVID-19 patients, myocarditis is rarely found and not associated with SARS-CoV-2 presence in cardiomyocytes. Chronic and acute forms of myocardial damage are constantly found and correlate with the severity of COVID-19 disease and pre-existing comorbidities.
Le, P;Ahmed, N;Yeo, GW;
PMID: 35697782 | DOI: 10.1038/s41556-022-00933-9
RNA processing plays a central role in accurately transmitting genetic information into functional RNA and protein regulators. To fully appreciate the RNA life-cycle, tools to observe RNA with high spatial and temporal resolution are critical. Here we review recent advances in RNA imaging and highlight how they will propel the field of RNA biology. We discuss current trends in RNA imaging and their potential to elucidate unanswered questions in RNA biology.
Reznik, S;Vuguin, P;Khoury, R;Loudig, O;Balakrashnian, R;Fineberg, S;Hughes, F;Harigopal, M;Charron, M;
| DOI: 10.20944/preprints202209.0063.v1
. Babies born to severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) infected mothers are at greater risk for perinatal morbidity and more likely to receive a neurodevelopmental diagnosis in the first year of life. However, the effect of maternal infection on placental function and neonatal outcomes varies depending upon the patient population. We set out to test our hypothesis that maternal SARS-CoV-2 infection in our underserved, socioeconomically disadvantaged, predominantly African American and Latina population in the Bronx, NY would have effects evident at birth. Fifty-five SARS-CoV-2 positive and 61 negative third trimester patients were randomly selected from Montefiore Medical Center (MMC), Bronx, NY. In addition, two positive cases from Yale New Haven Hospital, CT were included as controls. All 55 placentas delivered by SARS-CoV-2 positive mothers were uninfected by the virus, based on immunohistochemistry, in-situ hybridization, and qPCR analysis. However, placental villous infarcts, mild preeclampsia, shortened gestational periods and lower Apgar scores were observed in the infected cases. These findings suggest that even without entering the placenta, SARS-CoV-2 can affect various systemic pathways culminating in altered placental development and function, which may adversely affect the fetus, especially in a high-risk patient population such as ours. These results underline the importance of vaccination among pregnant women, particularly in low resource areas.
Annals of diagnostic pathology
Suster, D;Tili, E;Nuovo, GJ;
PMID: 36113259 | DOI: 10.1016/j.anndiagpath.2022.152032
This study compared the immune response in mild versus fatal SARS-CoV2 infection. Forty nasopharyngeal swabs with either productive mild infection (n = 20) or negative for SARS-CoV2 (n = 20) were tested along with ten lung sections from people who died of COVID-19 which contained abundant SARS-CoV2 and ten controls. There was a 25-fold increase in the CD3+T cell numbers in the viral positive nasopharyngeal swabs compared to the controls (p < 0.001) and no change in the CD3+T cell count in the fatal COVID-19 lungs versus the controls. CD11b + and CD206+ macrophage counts were significantly higher in the mild versus fatal disease (p = 0.002). In situ analysis for SARS-CoV2 RNA found ten COVID-19 lung sections that had no/rare detectable virus and also lacked the microangiopathy typical of the viral positive sections. These viral negative lung tissues when compared to the viral positive lung samples showed a highly significant increase in CD3+ and CD8 T cells (p < 0.001), equivalent numbers of CD163+ cells, and significantly less PDL1, CD11b and CD206+ cells (p = 0.002). It is concluded that mild SARS-CoV2 infection is marked by a much stronger CD3/CD8 T cell, CD11b, and CD206 macrophage response than the fatal lung disease where viral RNA is abundant.
British journal of pharmacology
Gupte, SA;Bakshi, CS;Blackham, E;Duhamel, GE;Jordan, A;Salgame, P;D'silva, M;Khan, MY;Nadler, J;Gupte, R;
PMID: 37259182 | DOI: 10.1111/bph.16155
COVID-19 infections caused by SARS-CoV-2 disseminate through human-to-human transmission can evoke severe inflammation. Treatments to reduce the SARS-CoV-2-associated inflammation are needed and are the focus of much research. In this study, we investigated the effect of N-Ethyl-N'-[(3β,5α)-17-oxoandrostan-3-yl] urea (NEOU), a novel 17α-ketosteroid derivative, on the severity of COVID-19 infections.Studies were conducted in SARS-CoV-2-infected K18-hACE2 mice.SARS-CoV-2-infected K18-hACE2 mice developed severe inflammatory crises and immune responses along with up-regulation of genes in associated signaling pathways in male more than female mice. Notably, SARS-CoV-2 infection down-regulated genes encoding drug metabolizing cytochrome P450 enzymes in male but not female mice. Treatment with NEOU (1 mg/kg/day) 24 or 72 h post-viral infection alleviated lung injury by decreasing expression of genes encoding inflammatory cytokines and chemokines while increasing expression of genes encoding immunoglobins. In situ hybridization using RNA scope probes and immunohistochemical assays revealed that NEOU increased resident CD169+ immunoregulatory macrophages and IBA-1 immunoreactive macrophage-dendritic cells within alveolar spaces in the lungs of infected mice. Consequentially, NEOU reduced morbidity more prominently in male than female mice. However, NEOU increased median survival time and accelerated recovery from infection by 6 days in both males and females.These findings demonstrate that SARS-CoV-2 exhibits gender bias by differentially regulating genes encoding inflammatory cytokines, immunogenic factors, and drug-metabolizing enzymes, in male versus female mice. Most importantly, we identified a novel 17α-ketosteroid that reduces the severity of COVID-19 infection and could be beneficial for reducing impact of COVID-19.This article is protected by
Scandinavian cardiovascular journal : SCJ
Razaghi, A;Szakos, A;Al-Shakarji, R;Björnstedt, M;Szekely, L;
PMID: 35678649 | DOI: 10.1080/14017431.2022.2085320
Objective. Patients with underlying heart diseases have a higher risk of dying from Covid-19. It has also been suggested that Covid-19 affects the heart through myocarditis. Despite the rapidly growing research on the management of Covid-19 associated complications, most of the ongoing research is focused on the respiratory complications of Covid-19, and little is known about the prevalence of myocarditis. Design. This study aimed to characterize myocardial involvement by using a panel of antibodies to detect hypoxic and inflammatory changes and the presence of SARS-CoV-2 proteins in heart tissues obtained during the autopsy procedure of Covid-19 deceased patients. Thirty-seven fatal COVID-19 cases and 21 controls were included in this study. Results. Overall, the Covid-19 hearts had several histopathological changes like the waviness of myocytes, fibrosis, contract band necrosis, infiltration of polymorphonuclear neutrophils, vacuolization, and necrosis of myocytes. In addition, endothelial damage and activation were detected in heart tissue. However, viral replication was not detected using RNA in situ hybridization. Also, lymphocyte infiltration, as a hallmark of myocarditis, was not seen in this study. Conclusion. No histological sign of myocarditis was detected in any of our cases; our findings are thus most congruent with the hypothesis of the presence of a circulating endothelium activating factor such as VEGF, originating outside of the heart, probably from the hypoxic part of the Covid-19 lungs.