Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (25)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.5 HD Red assay (5) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (5) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.0 Assay (3) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (2) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter

Research area

  • Development (8) Apply Development filter
  • Cancer (6) Apply Cancer filter
  • Developmental (5) Apply Developmental filter
  • Other (4) Apply Other filter
  • Neuroscience (2) Apply Neuroscience filter
  • Stem cell (2) Apply Stem cell filter
  • Stem Cells (2) Apply Stem Cells filter
  • Circadian Rhythms (1) Apply Circadian Rhythms filter
  • Reproductive Biology (1) Apply Reproductive Biology filter
  • Signalling (1) Apply Signalling filter
  • Single Cell (1) Apply Single Cell filter

Category

  • Publications (25) Apply Publications filter
O-fucosylation of thrombospondin type 1 repeats is essential for ECM remodeling and signaling during bone development

Matrix biology : journal of the International Society for Matrix Biology

2022 Feb 12

Neupane, S;Berardinelli, SJ;Cameron, DC;Grady, RC;Komatsu, DE;Percival, CJ;Takeuchi, M;Ito, A;Liu, TW;Nairn, AV;Moremen, KW;Haltiwanger, RS;Holdener, BC;
PMID: 35167946 | DOI: 10.1016/j.matbio.2022.02.002

Many extracellular matrix (ECM) associated proteins that influence ECM properties have Thrombospondin type 1 repeats (TSRs) which are modified with O-linked fucose. The O-fucose is added in the endoplasmic reticulum to folded TSRs by the enzyme Protein O-fucosyltransferase-2 (POFUT2) and is proposed to promote efficient trafficking of substrates. The importance of this modification for function of TSR-proteins is underscored by the early embryonic lethality of mouse embryos lacking Pofut2. To overcome early lethality and investigate the impact of the Pofut2 knockout on the secretion of POFUT2 substrates and on extracellular matrix properties in vivo, we deleted Pofut2 in the developing limb mesenchyme using Prrx1-Cre recombinase. Loss of Pofut2 in the limb mesenchyme caused significant shortening of the limbs, long bones and tendons and stiff joint resembling the musculoskeletal dysplasias in human and in mice with mutations in ADAMTS or ADAMTSL proteins. Limb shortening was evident at embryonic day 14.5 where loss of O-fucosylation led to an accumulation of fibrillin 2 (FBN2), decreased BMP and IHH signaling, and increased TGF-β signaling. Consistent with these changes we saw a decrease in the size of the hypertrophic zone with lower levels of Collagen-X. Unexpectedly, we observed minimal effects of the Pofut2 knockout on secretion of two POFUT2 substrates, CCN2 or ADAMTS17, in the developing bone. In contrast, CCN2 and two other POFUT2 substrates important for bone development, ADAMTS6 and 10, showed a decrease in secretion from POFUT2-null HEK293T cells in vitro. These combined results suggest that the impact of the Pofut2 mutation is cell-type specific. In addition, these observations raise the possibility that the O-fucose modification on TSRs extends beyond promoting efficient trafficking of POFUT2 substrates and has the potential to influence their function in the extracellular environment.
R-spondin2 signaling is required for oocyte-driven intercellular communication and follicular growth

Cell Death Differ

2020 Apr 27

De Cian MC, Gregoire EP, Le Rolle M, Lachambre S, Mondin M, Bell S, Guigon CJ, Chassot AA, Chaboissier MC
PMID: 32341451 | DOI: 10.1038/s41418-020-0547-7

R-spondin2 (RSPO2) is a member of the R-spondin family, which are secreted activators of the WNT/?-catenin (CTNNB1) signaling pathway. In the mouse postnatal ovary, WNT/CTNNB1 signaling is active in the oocyte and in the neighboring supporting cells, the granulosa cells. Although the role of Rspo2 has been previously studied using in vitro experiments, the results are conflicting and the in vivo ovarian function of Rspo2 remains unclear. In the present study, we found that RSPO2/Rspo2 expression is restricted to the oocyte of developing follicles in both human and mouse ovaries from the beginning of the follicular growth. In mice, genetic deletion of Rspo2 does not impair oocyte growth, but instead prevents cell cycle progression of neighboring granulosa cells, thus resulting in an arrest of follicular growth. We further show this cell cycle arrest to be independent of growth promoting GDF9 signaling, but rather associated with a downregulation of WNT/CTNNB1 signaling in granulosa cells. To confirm the contribution of WNT/CTNNB1 signaling in granulosa cell proliferation, we induced cell type specific deletion of Ctnnb1 postnatally. Strikingly, follicles lacking Ctnnb1 failed to develop beyond the primary stage. These results show that RSPO2 acts in a paracrine manner to sustain granulosa cell proliferation in early developing follicles. Taken together, our data demonstrate that the activation of WNT/CTNNB1 signaling by RSPO2 is essential for oocyte-granulosa cell interactions that drive maturation of the ovarian follicles and eventually female fertility
Mutation in the Ciliary Protein C2CD3 Reveals Organ-Specific Mechanisms of Hedgehog Signal Transduction in Avian Embryos

Journal of Developmental Biology

2021 Mar 25

Brooks, E;Bonatto Paese, C;Carroll, A;Struve, J;Nagy, N;Brugmann, S;
| DOI: 10.3390/jdb9020012

Primary cilia are ubiquitous microtubule-based organelles that serve as signaling hubs for numerous developmental pathways, most notably the Hedgehog (Hh) pathway. Defects in the structure or function of primary cilia result in a class of diseases called ciliopathies. It is well known that primary cilia participate in transducing a Hh signal, and as such ciliopathies frequently present with phenotypes indicative of aberrant Hh function. Interestingly, the exact mechanisms of cilia-dependent Hh signaling transduction are unclear as some ciliopathic animal models simultaneously present with gain-of-Hh phenotypes in one organ system and loss-of-Hh phenotypes in another. To better understand how Hh signaling is perturbed across different tissues in ciliopathic conditions, we examined four distinct Hh-dependent signaling centers in the naturally occurring avian ciliopathic mutant talpid2 (ta2). In addition to the well-known and previously reported limb and craniofacial malformations, we observed dorsal-ventral patterning defects in the neural tube, and a shortened gastrointestinal tract. Molecular analyses for elements of the Hh pathway revealed that the loss of cilia impact transduction of an Hh signal in a tissue-specific manner at variable levels of the pathway. These studies will provide increased knowledge into how impaired ciliogenesis differentially regulates Hh signaling across tissues and will provide potential avenues for future targeted therapeutic treatments.
The expression of fgfr3 in the zebrafish head

Gene Expr Patterns.

2018 Apr 06

Ledwon JK, Turin SY, Gosain AK, Topczewska JM.
PMID: 29630949 | DOI: 10.1016/j.gep.2018.04.002

Fibroblast growth factor (FGF) signaling is essential for many developmental processes and plays a pivotal role in skeletal homeostasis, regeneration and wound healing. FGF signals through one of five tyrosine kinase receptors: Fgfr1a, -1b, -2, -3, -4. To characterize the expression of zebrafish fgfr3 from the larval stage to adulthood, we used RNAscope in situ hybridization on paraffin sections of the zebrafish head. Our study revealed spatial and temporal distribution of fgfr3 transcript in chondrocytes of the head cartilages, osteoblasts involved in bone formation, ventricular zone of the brain, undifferentiated mesenchymal cells of the skin, and lens epithelium of the eye. In general, the expression pattern of zebrafish fgfr3 is similar to the expression observed in higher vertebrates.

Rhythmic cilia changes support SCN neuron coherence in circadian clock

Science (New York, N.Y.)

2023 Jun 02

Tu, HQ;Li, S;Xu, YL;Zhang, YC;Li, PY;Liang, LY;Song, GP;Jian, XX;Wu, M;Song, ZQ;Li, TT;Hu, HB;Yuan, JF;Shen, XL;Li, JN;Han, QY;Wang, K;Zhang, T;Zhou, T;Li, AL;Zhang, XM;Li, HY;
PMID: 37262147 | DOI: 10.1126/science.abm1962

The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report that primary cilia are required for intercellular coupling among SCN neurons to maintain the robustness of the internal clock in mice. Cilia in neuromedin S-producing (NMS) neurons exhibit pronounced circadian rhythmicity in abundance and length. Genetic ablation of ciliogenesis in NMS neurons enabled a rapid phase shift of the internal clock under jet-lag conditions. The circadian rhythms of individual neurons in cilia-deficient SCN slices lost their coherence after external perturbations. Rhythmic cilia changes drive oscillations of Sonic Hedgehog (Shh) signaling and clock gene expression. Inactivation of Shh signaling in NMS neurons phenocopied the effects of cilia ablation. Thus, cilia-Shh signaling in the SCN aids intercellular coupling.
Arrest of WNT/β-catenin signaling enables the transition from pluripotent to differentiated germ cells in mouse ovaries

Proceedings of the National Academy of Sciences of the United States of America

2021 Jul 27

Le Rolle, M;Massa, F;Siggers, P;Turchi, L;Loubat, A;Koo, BK;Clevers, H;Greenfield, A;Schedl, A;Chaboissier, MC;Chassot, AA;
PMID: 34301885 | DOI: 10.1073/pnas.2023376118

Germ cells form the basis for sexual reproduction by producing gametes. In ovaries, primordial germ cells exit the cell cycle and the pluripotency-associated state, differentiate into oogonia, and initiate meiosis. Despite the importance of germ cell differentiation for sexual reproduction, signaling pathways regulating their fate remain largely unknown. Here, we show in mouse embryonic ovaries that germ cell-intrinsic β-catenin activity maintains pluripotency and that its repression is essential to allow differentiation and meiosis entry in a timely manner. Accordingly, in β-catenin loss-of-function and gain-of-function mouse models, the germ cells precociously enter meiosis or remain in the pluripotent state, respectively. We further show that interaction of β-catenin and the pluripotent-associated factor POU5F1 in the nucleus is associated with germ cell pluripotency. The exit of this complex from the nucleus correlates with germ cell differentiation, a process promoted by the up-regulation of Znrf3, a negative regulator of WNT/β-catenin signaling. Together, these data identify the molecular basis of the transition from primordial germ cells to oogonia and demonstrate that β-catenin is a central gatekeeper in ovarian differentiation and gametogenesis.
INTU is essential for oncogenic Hh signaling through regulating primary cilia formation in basal cell carcinoma.

Oncogene

2017 May 01

Yang N, Leung EL, Liu C, Li L, Eguether T, Jun Yao XJ, Jones EC, Norris DA, Liu A, Clark RA, Roop DR, Pazour GJ, Shroyer KR, Chen J.
PMID: 28459465 | DOI: 10.1038/onc.2017.117

Inturned (INTU), a cilia and planar polarity effector, performs prominent ciliogenic functions during morphogenesis, such as in the skin. INTU is expressed in adult tissues but its role in tissue maintenance is unknown. Here, we report that the expression of the INTU gene is aberrantly elevated in human basal cell carcinoma (BCC), coinciding with increased primary cilia formation and activated hedgehog (Hh) signaling. Disrupting Intu in an oncogenic mutant Smo (SmoM2)-driven BCC mouse model prevented the formation of BCC through suppressing primary cilia formation and Hh signaling, suggesting that Intu performs a permissive role during BCC formation. INTU is essential for intraflagellar transport A complex assembly during ciliogenesis. To further determine whether Intu is directly involved in the activation of Hh signaling downstream of ciliogenesis, we examined the Hh signaling pathway in mouse embryonic fibroblasts, which readily responds to the Hh pathway activation. Depleting Intu blocked Smo agonist-induced Hh pathway activation, whereas the expression of Gli2ΔN, a constitutively active Gli2, restored Hh pathway activation in Intu-deficient cells, suggesting that INTU functions upstream of Gli2 activation. In contrast, overexpressing Intu did not promote ciliogenesis or Hh signaling. Taken together, data obtained from this study suggest that INTU is indispensable during BCC tumorigenesis and that its aberrant upregulation is likely a prerequisite for primary cilia formation during Hh-dependent tumorigenesis.

Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth

Nat Commun.

2016 Aug 05

Gerling M, Büller NV, Kirn LM, Joost S, Frings O, Englert B, Bergström Å, Kuiper RV, Blaas L, Wielenga MC, Almer S, Kühl AA, Fredlund E, van den Brink GR, Toftgård R.
PMID: 27492255 | DOI: 10.1038/ncomms12321

A role for Hedgehog (Hh) signalling in the development of colorectal cancer (CRC) has been proposed. In CRC and other solid tumours, Hh ligands are upregulated; however, a specific Hh antagonist provided no benefit in a clinical trial. Here we use Hh reporter mice to show that downstream Hh activity is unexpectedly diminished in a mouse model of colitis-associated colon cancer, and that downstream Hh signalling is restricted to the stroma. Functionally, stroma-specific Hh activation in mice markedly reduces the tumour load and blocks progression of advanced neoplasms, partly via the modulation of BMP signalling and restriction of the colonic stem cell signature. By contrast, attenuated Hh signalling accelerates colonic tumourigenesis. In human CRC, downstream Hh activity is similarly reduced and canonical Hh signalling remains predominantly paracrine. Our results suggest that diminished downstream Hh signalling enhances CRC development, and that stromal Hh activation can act as a colonic tumour suppressor.

Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid

PLoS Genet.

2017 Jul 17

El Shahawy M, Reibring CG, Neben CL, Hallberg K, Marangoni P, Harfe BD, Klein OD, Linde A, Gritli-Linde A.
PMID: 28715412 | DOI: 10.1371/journal.pgen.1006914

The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity.

Secreted metalloproteases ADAMTS9 and ADAMTS20 have a non-canonical role in ciliary vesicle growth during ciliogenesis.

Nat Commun.

2019 Feb 27

Nandadasa S, Kraft CM, Wang LW, O'Donnell A, Patel R, Gee HY, Grobe K, Cox TC, Hildebrandt F, Apte SS.
PMID: 30814516 | DOI: 10.1038/s41467-019-08520-7

Although hundreds of cytosolic or transmembrane molecules form the primary cilium, few secreted molecules are known to contribute to ciliogenesis. Here, homologous secreted metalloproteases ADAMTS9 and ADAMTS20 are identified as ciliogenesis regulators that act intracellularly. Secreted and furin-processed ADAMTS9 bound heparan sulfate and was internalized by LRP1, LRP2 and clathrin-mediated endocytosis to be gathered in Rab11 vesicles with a unique periciliary localization defined by super-resolution microscopy. CRISPR-Cas9 inactivation of ADAMTS9 impaired ciliogenesis in RPE-1 cells, which was restored by catalytically active ADAMTS9 or ADAMTS20 acting in trans, but not by their proteolytically inactive mutants. Their mutagenesis in mice impaired neural and yolk sac ciliogenesis, leading to morphogenetic anomalies resulting from impaired hedgehog signaling, which is transduced by primary cilia. In addition to their cognate extracellular proteolytic activity, ADAMTS9 and ADAMTS20 thus have an additional proteolytic role intracellularly, revealing an unexpected regulatory dimension in ciliogenesis.

Single-cell sequencing reveals suppressive transcriptional programs regulated by MIS/AMH in neonatal ovaries

Proceedings of the National Academy of Sciences of the United States of America

2021 May 18

Meinsohn, MC;Saatcioglu, HD;Wei, L;Li, Y;Horn, H;Chauvin, M;Kano, M;Nguyen, NMP;Nagykery, N;Kashiwagi, A;Samore, WR;Wang, D;Oliva, E;Gao, G;Morris, ME;Donahoe, PK;Pépin, D;
PMID: 33980714 | DOI: 10.1073/pnas.2100920118

Müllerian inhibiting substance (MIS/AMH), produced by granulosa cells of growing follicles, is an important regulator of folliculogenesis and follicle development. Treatment with exogenous MIS in mice suppresses follicle development and prevents ovulation. To investigate the mechanisms by which MIS inhibits follicle development, we performed single-cell RNA sequencing of whole neonatal ovaries treated with MIS at birth and analyzed at postnatal day 6, coinciding with the first wave of follicle growth. We identified distinct transcriptional signatures associated with MIS responses in the ovarian cell types. MIS treatment inhibited proliferation in granulosa, surface epithelial, and stromal cell types of the ovary and elicited a unique signature of quiescence in granulosa cells. In addition to decreasing the number of growing preantral follicles, we found that MIS treatment uncoupled the maturation of germ cells and granulosa cells. In conclusion, MIS suppressed neonatal follicle development by inhibiting proliferation, imposing a quiescent cell state, and preventing granulosa cell differentiation.
The ciliopathy gene rpgrip1l is essential for hair follicle development.

J Invest Dermatol. 2015 Mar;135(3):701-9.

Chen J, Laclef C, Moncayo A, Snedecor ER, Yang N, Li L, Takemaru K, Paus R, Schneider-Maunoury S, Clark RA.
PMID: 25398052 | DOI: 10.1038/jid.2014.483.

The primary cilium is essential for skin morphogenesis through regulating the Notch, Wnt, and hedgehog signaling pathways. Prior studies on the functions of primary cilia in the skin were based on the investigations of genes that are essential for cilium formation. However, none of these ciliogenic genes has been linked to ciliopathy, a group of disorders caused by abnormal formation or function of cilia. To determine whether there is a genetic and molecular link between ciliopathies and skin morphogenesis, we investigated the role of RPGRIP1L, a gene mutated in Joubert (JBTS) and Meckel (MKS) syndromes, two severe forms of ciliopathy, in the context of skin development. We found that RPGRIP1L is essential for hair follicle morphogenesis. Specifically, disrupting the Rpgrip1l gene in mice resulted in reduced proliferation and differentiation of follicular keratinocytes, leading to hair follicle developmental defects. These defects were associated with significantly decreased primary cilium formation and attenuated hedgehog signaling. In contrast, we found that hair follicle induction and polarization and the development of interfollicular epidermis were unaffected. This study indicates that RPGRIP1L, a ciliopathy gene, is essential for hair follicle morphogenesis likely through regulating primary cilia formation and the hedgehog signaling pathway.

Pages

  • 1
  • 2
  • 3
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?