Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1420)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (1413)
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (220) Apply RNAscope filter
  • TBD (148) Apply TBD filter
  • RNAscope Multiplex Fluorescent Assay (39) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (13) Apply RNAscope Fluorescent Multiplex Assay filter
  • Basescope (10) Apply Basescope filter
  • RNAscope 2.5 HD Brown Assay (9) Apply RNAscope 2.5 HD Brown Assay filter
  • DNAscope HD Duplex Reagent Kit (8) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope HiPlex v2 assay (8) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (6) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Duplex (5) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter

Research area

  • Neuroscience (141) Apply Neuroscience filter
  • Cancer (110) Apply Cancer filter
  • Development (54) Apply Development filter
  • Other: Methods (44) Apply Other: Methods filter
  • Inflammation (32) Apply Inflammation filter
  • Infectious (18) Apply Infectious filter
  • HIV (15) Apply HIV filter
  • Pain (14) Apply Pain filter
  • Stem Cells (13) Apply Stem Cells filter
  • HPV (12) Apply HPV filter
  • Other: Neuromuscular Disorders (10) Apply Other: Neuromuscular Disorders filter
  • Other: Heart (9) Apply Other: Heart filter
  • Other: Lung (9) Apply Other: Lung filter
  • CGT (8) Apply CGT filter
  • Covid (8) Apply Covid filter
  • Other: Metabolism (8) Apply Other: Metabolism filter
  • Infectious Disease (7) Apply Infectious Disease filter
  • Stem cell (7) Apply Stem cell filter
  • Immunotherapy (6) Apply Immunotherapy filter
  • Metabolism (6) Apply Metabolism filter
  • Other: Reproduction (6) Apply Other: Reproduction filter
  • Endocrinology (5) Apply Endocrinology filter
  • LncRNAs (5) Apply LncRNAs filter
  • Obesity (5) Apply Obesity filter
  • Reproduction (5) Apply Reproduction filter
  • Aging (4) Apply Aging filter
  • Cystic Fibrosis (4) Apply Cystic Fibrosis filter
  • Heart (4) Apply Heart filter
  • Itch (4) Apply Itch filter
  • lncRNA (4) Apply lncRNA filter
  • Other: Kidney (4) Apply Other: Kidney filter
  • Other: Skin (4) Apply Other: Skin filter
  • Transcriptomics (4) Apply Transcriptomics filter
  • Alzheimer's Disease (3) Apply Alzheimer's Disease filter
  • diabetes (3) Apply diabetes filter
  • Immunology (3) Apply Immunology filter
  • Kidney (3) Apply Kidney filter
  • Memory (3) Apply Memory filter
  • other: Aging (3) Apply other: Aging filter
  • Other: Eyes (3) Apply Other: Eyes filter
  • Other: Gut (3) Apply Other: Gut filter
  • Other: Huntington’s Disease (3) Apply Other: Huntington’s Disease filter
  • Other: Transcriptomics (3) Apply Other: Transcriptomics filter
  • Other: Zoological Disease (3) Apply Other: Zoological Disease filter
  • Psychiatry (3) Apply Psychiatry filter
  • Regeneration (3) Apply Regeneration filter
  • Reproductive Biology (3) Apply Reproductive Biology filter
  • Skin (3) Apply Skin filter
  • Stress (3) Apply Stress filter
  • Tumor microenvironment (3) Apply Tumor microenvironment filter

Category

  • Publications (1420) Apply Publications filter
A proteogenomic portrait of lung squamous cell carcinoma

Cell

2021 Aug 05

Satpathy, S;Krug, K;Jean Beltran, PM;Savage, SR;Petralia, F;Kumar-Sinha, C;Dou, Y;Reva, B;Kane, MH;Avanessian, SC;Vasaikar, SV;Krek, A;Lei, JT;Jaehnig, EJ;Omelchenko, T;Geffen, Y;Bergstrom, EJ;Stathias, V;Christianson, KE;Heiman, DI;Cieslik, MP;Cao, S;Song, X;Ji, J;Liu, W;Li, K;Wen, B;Li, Y;Gümüş, ZH;Selvan, ME;Soundararajan, R;Visal, TH;Raso, MG;Parra, ER;Babur, Ö;Vats, P;Anand, S;Schraink, T;Cornwell, M;Rodrigues, FM;Zhu, H;Mo, CK;Zhang, Y;da Veiga Leprevost, F;Huang, C;Chinnaiyan, AM;Wyczalkowski, MA;Omenn, GS;Newton, CJ;Schurer, S;Ruggles, KV;Fenyö, D;Jewell, SD;Thiagarajan, M;Mesri, M;Rodriguez, H;Mani, SA;Udeshi, ND;Getz, G;Suh, J;Li, QK;Hostetter, G;Paik, PK;Dhanasekaran, SM;Govindan, R;Ding, L;Robles, AI;Clauser, KR;Nesvizhskii, AI;Wang, P;Carr, SA;Zhang, B;Mani, DR;Gillette, MA;Clinical Proteomic Tumor Analysis Consortium, ;
PMID: 34358469 | DOI: 10.1016/j.cell.2021.07.016

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.
Epithelial STAT6 O-GlcNAcylation Drives Anti-Helminth Immunity via a Concerted Alarmin Response

SSRN Electronic Journal

2021 Sep 08

Zhao, M;Ren, K;Xiong, X;Xin, Y;Kim, A;Maynard, J;Zou, Y;Battist, A;Koneripalli, N;Huang, Z;Zhang, Z;Yu, J;Wang, H;Salgado, O;Hogquist, K;Revelo, X;Burlingame, A;Gao, X;Lin, Z;von Moltke, J;Ruan, H;
| DOI: 10.2139/ssrn.3917158

The epithelium is an integral component of mucosal barrier and host immunity. Following helminth parasite infection, the intestinal epithelial cells secrete "alarmin” cytokines, such as interleukin (IL)-25 and IL-33, to initiate the type 2 immune responses for helminth expulsion and tolerance. However, it is unknown how helminth infection and the resulting type 2 cytokine milieu drive epithelial remodeling and orchestrate alarmin secretion. Here we report that, intestinal epithelial O-linked N-Acetylglucosamine (O-GlcNAc) protein modification is induced upon helminth infections. By modifying and activating STAT6, O-GlcNAc transferase (OGT) promotes the transcription of lineage-defining transcription factor _Pou2f3_ in tuft cell differentiation and IL-25 production. Meanwhile, STAT6 O-GlcNAcylation activates the expression of _Gsdmc_ family genes. The resulting membrane pore formed by GSDMC facilitates the unconventional secretion of IL-33 from goblet cells. GSDMC-mediated IL-33 secretion is indispensable for the host to mount effective antihelminth immunity and support intestinal homeostasis. Protein O-GlcNAcylation can be harnessed for the future treatment of type 2 inflammation-associated human diseases.
Avances en citometría de masas y aplicabilidad en patología digital para estudios clínico-traslacionales en oncología

Advances in Laboratory Medicine / Avances en Medicina de Laboratorio

2021 Aug 25

Cereceda, K;Jorquera, R;Villarroel-Espíndola, F;
| DOI: 10.1515/almed-2021-0051

Resumen El desarrollo de la citometría de masas y posteriormente su adaptación para el análisis de secciones histológicas ha revolucionado la forma de caracterizar a nivel espacial múltiples componentes de manera simultánea, permitiendo la correlación genotípica y fenotípica de la célula y su entorno durante estudios clínicos-traslaciones. En este trabajo, hemos revisado los hitos más relevantes en el desarrollo, implementación y aplicabilidad del análisis de imágenes de componentes múltiples para el estudio de cáncer y otras dolencias, y enfocado nuestro interés que aquellos autores que utilizan imágenes obtenidas mediante citometría de masas o bien haz de iones. Esta revisión tiene como objetivo que el lector se familiarice con las estrategias técnicas de verificación de la herramienta y las múltiples posibilidades de uso abordadas por diferentes autores, y además, poder proyectar sus propias investigaciones hacia la utilización de imágenes obtenidas por citometría de masas (IMC), o imágenes por haz de iones multiplexados (MIBI) en cualquiera de los campos de investigación biomédica.
Prognostic value and cost benefit of HPV testing for oropharyngeal cancer patients

Oral diseases

2021 Jun 15

Lu, XJD;Liu, KYP;Prisman, E;Wu, J;Zhu, YS;Poh, C;
PMID: 34129700 | DOI: 10.1111/odi.13938

High-risk human papillomavirus (HR-HPV) can cause oropharyngeal squamous cell carcinoma (OpSCC). The revised 8th edition of the AJCC Staging Manual now stages OpSCC by incorporating p16 immunohistochemistry (IHC), the surrogate marker for HPV status. This study assessed the prognostic values of p16 and HPV markers.We identified 244 OpSCC patients diagnosed between 2000-2008 from the British Columbia Cancer Registry with enough tissue to conduct experiments. Formalin-fixed, paraffin-embedded tissue sections were stained for p16 IHC, RNA in situ hybridization (ISH) HPV 16 and 18, and DNA ISH HR-HPV. Electronic charts were reviewed to collect clinical and outcome data. Combined positive RNA and/or DNA ISH was used to denote HPV status.HPV was positive among 77.9% of samples. Using HPV as the benchmark, p16 IHC had high sensitivity (90.5%), but low specificity (68.5%). Distinct subgroups of patients were identified by sequential separation of p16 then HPV status. Among both p16-positive and p16-negative groups, HPV-positive patients were younger, more males, and had better clinical outcomes, especially 5-year overall survival. We further evaluated the technical costs associated with HPV testing.HPV is more prognostic than p16 for OpSCC. Clinical laboratories can adopt HPV RNA ISH for routine analysis.This article is protected by
Hypoxia-induced lncHILAR promotes renal cancer cell invasion and metastasis via ceRNA for the miR-613/206/1-1-3p/Jagged-1/Notch/CXCR4 signaling pathway

Molecular therapy : the journal of the American Society of Gene Therapy

2021 May 28

Hu, G;Ma, J;Zhang, J;Chen, Y;Liu, H;Huang, Y;Zheng, J;Xu, Y;Xue, W;Zhai, W;
PMID: 34058384 | DOI: 10.1016/j.ymthe.2021.05.020

Hypoxia has been identified as a common driving factor that contributes to tumor progression, including invasion and metastasis. However, the underlying mechanisms of enhanced invasion and metastasis under hypoxia remain unclear. A hypoxic microenvironment promoted invasion and metastasis of RCC by upregulating the expression of LOC100506178, which we named Hypoxia-Induced lncRNA Associated with Renal Cell Carcinoma (lncHILAR). Knockdown of lncHILAR inhibited cell invasion and migration while overexpression of lncHILAR conversely facilitated cell invasion and migration of RCC cells. Notably, hypoxic RCC cells secreted exosomes packaged with lncHILAR which were taken up by normoxic RCC cells and then drove normoxic cell invasion. Mechanistically, hypoxia-induced-lncHILAR elevated RCC invasion and metastasis by acting as a competing endogenous (ce)RNA for miR-613/206/1-1-3p, which led to the upregulation of Jagged-1 and C-X-C Motif Chemokine Receptor 4 (CXCR4). Activation of the of Jagged-1/Notch/CXCR4 axis induced RCC metastasis. Hypoxia-induced lncHILAR promotes RCC cell invasion and metastasis via ceRNA for the miR-613/206/1-1-3p/Jagged-1/Notch/CXCR4 axis. The novel lncHILAR may thus serve as a potential biomarker and therapeutic target in RCC.
Lateral ventral tegmental area GABAergic and glutamatergic modulation of conditioned learning

Cell reports

2021 Mar 16

Rizzi, G;Li, Z;Hogrefe, N;Tan, KR;
PMID: 33730568 | DOI: 10.1016/j.celrep.2021.108867

The firing activity of dorso-medial-striatal-cholinergic interneurons (dmCINs) is a neural correlate of classical conditioning. Tonically active, they pause in response to salient stimuli, mediating acquisition of predictive cues/outcome associations. Cortical and thalamic inputs are typical of the rather limited knowledge about underlying circuitry contributing to this function. Here, we dissect the midbrain GABA and glutamate-to-dmCIN pathways and evaluate how they influence conditioned behavior. We report that midbrain neurons discriminate auditory cues and encode the association of a predictive stimulus with a footshock. Furthermore, GABA and glutamate cells form selective monosynaptic contacts onto dmCINs and di-synaptic ones via the parafascicular thalamus. Pathway-specific inhibition of each sub-circuit produces differential impairments of fear-conditioned learning. Finally, Vglut2-expressing cells discriminate between CSs although Vgat-positive neurons associate the predictive cue with the outcome. Overall, these data suggest that each component of the network carries information pertinent to sub-domains of the behavioral strategy.
Single cell transcriptomics of primate sensory neurons identifies cell types associated with chronic pain

Nature communications

2021 Mar 08

Kupari, J;Usoskin, D;Parisien, M;Lou, D;Hu, Y;Fatt, M;Lönnerberg, P;Spångberg, M;Eriksson, B;Barkas, N;Kharchenko, PV;Loré, K;Khoury, S;Diatchenko, L;Ernfors, P;
PMID: 33686078 | DOI: 10.1038/s41467-021-21725-z

Distinct types of dorsal root ganglion sensory neurons may have unique contributions to chronic pain. Identification of primate sensory neuron types is critical for understanding the cellular origin and heritability of chronic pain. However, molecular insights into the primate sensory neurons are missing. Here we classify non-human primate dorsal root ganglion sensory neurons based on their transcriptome and map human pain heritability to neuronal types. First, we identified cell correlates between two major datasets for mouse sensory neuron types. Machine learning exposes an overall cross-species conservation of somatosensory neurons between primate and mouse, although with differences at individual gene level, highlighting the importance of primate data for clinical translation. We map genomic loci associated with chronic pain in human onto primate sensory neuron types to identify the cellular origin of chronic pain. Genome-wide associations for chronic pain converge on two different neuronal types distributed between pain disorders that display different genetic susceptibilities, suggesting both unique and shared mechanisms between different pain conditions.
MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche

Nature

2021 Mar 03

Wu, N;Sun, H;Zhao, X;Zhang, Y;Tan, J;Qi, Y;Wang, Q;Ng, M;Liu, Z;He, L;Niu, X;Chen, L;Liu, Z;Li, HB;Zeng, YA;Roulis, M;Liu, D;Cheng, J;Zhou, B;Ng, LG;Zou, D;Ye, Y;Flavell, RA;Ginhoux, F;Su, B;
PMID: 33658717 | DOI: 10.1038/s41586-021-03283-y

Intestinal stromal cells are known to modulate the propagation and differentiation of intestinal stem cells1,2. However, the precise cellular and molecular mechanisms by which this diverse stromal cell population maintains tissue homeostasis and repair are poorly understood. Here we describe a subset of intestinal stromal cells, named MAP3K2-regulated intestinal stromal cells (MRISCs), and show that they are the primary cellular source of the WNT agonist R-spondin 1 following intestinal injury in mice. MRISCs, which are epigenetically and transcriptomically distinct from subsets of intestinal stromal cells that have previously been reported3-6, are strategically localized at the bases of colon crypts, and function to maintain LGR5+ intestinal stem cells and protect against acute intestinal damage through enhanced R-spondin 1 production. Mechanistically, this MAP3K2 specific function is mediated by a previously unknown reactive oxygen species (ROS)-MAP3K2-ERK5-KLF2 axis to enhance production of R-spondin 1. Our results identify MRISCs as a key component of an intestinal stem cell niche that specifically depends on MAP3K2 to augment WNT signalling for the regeneration of damaged intestine.
Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell

Science advances

2021 Feb 01

Kildisiute, G;Kholosy, WM;Young, MD;Roberts, K;Elmentaite, R;van Hooff, SR;Pacyna, CN;Khabirova, E;Piapi, A;Thevanesan, C;Bugallo-Blanco, E;Burke, C;Mamanova, L;Keller, KM;Langenberg-Ververgaert, KPS;Lijnzaad, P;Margaritis, T;Holstege, FCP;Tas, ML;Wijnen, MHWA;van Noesel, MM;Del Valle, I;Barone, G;van der Linden, R;Duncan, C;Anderson, J;Achermann, JC;Haniffa, M;Teichmann, SA;Rampling, D;Sebire, NJ;He, X;de Krijger, RR;Barker, RA;Meyer, KB;Bayraktar, O;Straathof, K;Molenaar, JJ;Behjati, S;
PMID: 33547074 | DOI: 10.1126/sciadv.abd3311

Neuroblastoma is a childhood cancer that resembles developmental stages of the neural crest. It is not established what developmental processes neuroblastoma cancer cells represent. Here, we sought to reveal the phenotype of neuroblastoma cancer cells by comparing cancer (n = 19,723) with normal fetal adrenal single-cell transcriptomes (n = 57,972). Our principal finding was that the neuroblastoma cancer cell resembled fetal sympathoblasts, but no other fetal adrenal cell type. The sympathoblastic state was a universal feature of neuroblastoma cells, transcending cell cluster diversity, individual patients, and clinical phenotypes. We substantiated our findings in 650 neuroblastoma bulk transcriptomes and by integrating canonical features of the neuroblastoma genome with transcriptional signals. Overall, our observations indicate that a pan-neuroblastoma cancer cell state exists, which may be attractive for novel immunotherapeutic and targeted avenues.
CRISPR Systems for COVID-19 Diagnosis

ACS sensors

2021 Jan 27

Rahimi, H;Salehiabar, M;Barsbay, M;Ghaffarlou, M;Kavetskyy, T;Sharafi, A;Davaran, S;Chauhan, SC;Danafar, H;Kaboli, S;Nosrati, H;Yallapu, MM;Conde, J;
PMID: 33502175 | DOI: 10.1021/acssensors.0c02312

The emergence of the new coronavirus 2019 (COVID-19) was first seen in December 2019, which has spread rapidly and become a global pandemic. The number of cases of COVID-19 and its associated mortality have raised serious concerns worldwide. Early diagnosis of viral infection undoubtedly allows rapid intervention, disease management, and substantial control of the rapid spread of the disease. Currently, the standard approach for COVID-19 diagnosis globally is the RT-qPCR test; however, the limited access to kits and associated reagents, the need for specialized lab equipment, and the need for highly skilled personnel has led to a detection slowdown. Recently, the development of clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic systems has reshaped molecular diagnosis. The benefits of the CRISPR system such as speed, precision, specificity, strength, efficiency, and versatility have inspired researchers to develop CRISPR-based diagnostic and therapeutic methods. With the global COVID-19 outbreak, different groups have begun to design and develop diagnostic and therapeutic programs based on the efficient CRISPR system. CRISPR-based COVID-19 diagnostic systems have advantages such as a high detection speed (i.e., 30 min from raw sample to reach a result), high sensitivity and precision, portability, and no need for specialized laboratory equipment. Here, we review contemporary studies on the detection of COVID-19 based on the CRISPR system.
Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis

Nature communications

2021 Jan 13

Wu, CL;Dicks, A;Steward, N;Tang, R;Katz, DB;Choi, YR;Guilak, F;
PMID: 33441552 | DOI: 10.1038/s41467-020-20598-y

The therapeutic application of human induced pluripotent stem cells (hiPSCs) for cartilage regeneration is largely hindered by the low yield of chondrocytes accompanied by unpredictable and heterogeneous off-target differentiation of cells during chondrogenesis. Here, we combine bulk RNA sequencing, single cell RNA sequencing, and bioinformatic analyses, including weighted gene co-expression analysis (WGCNA), to investigate the gene regulatory networks regulating hiPSC differentiation under chondrogenic conditions. We identify specific WNTs and MITF as hub genes governing the generation of off-target differentiation into neural cells and melanocytes during hiPSC chondrogenesis. With heterocellular signaling models, we further show that WNT signaling produced by off-target cells is responsible for inducing chondrocyte hypertrophy. By targeting WNTs and MITF, we eliminate these cell lineages, significantly enhancing the yield and homogeneity of hiPSC-derived chondrocytes. Collectively, our findings identify the trajectories and molecular mechanisms governing cell fate decision in hiPSC chondrogenesis, as well as dynamic transcriptome profiles orchestrating chondrocyte proliferation and differentiation.
Clinicopathological and prognostic significance of immunophenotypic characterization of endocervical adenocarcinoma using CLDN18, CDH17, and PAX8 in association with HPV status

Virchows Archiv : an international journal of pathology

2021 Sep 28

Asaka, S;Nakajima, T;Ida, K;Asaka, R;Kobayashi, C;Ito, M;Miyamoto, T;Uehara, T;Ota, H;
PMID: 34581850 | DOI: 10.1007/s00428-021-03207-1

In 2020, the WHO published a new system for classifying invasive endocervical adenocarcinoma based on histological features and high-risk human papillomavirus (HPV) infection. However, immunophenotypes of each histological subtype require further investigation. We immunohistochemically analyzed 66 invasive endocervical adenocarcinomas using three cell-lineage-specific markers: claudin 18 (CLDN18) for gastric, cadherin 17 (CDH17) for intestinal, and PAX8 for Müllerian epithelial cells. We identified five immunophenotypes of endocervical adenocarcinoma: gastric (21%); intestinal (14%); gastrointestinal (11%); Müllerian (35%); and not otherwise specified (NOS) (20%). Adenocarcinomas with gastric immunophenotype, characterized by aging (p = 0.0050), infrequent HPV infection (p < 0.0001), concurrent lobular endocervical glandular hyperplasia (p = 0.0060), lymphovascular invasion (p = 0.0073), advanced clinical stage (p = 0.0001), and the poorest progression-free (p < 0.0001) and overall (p = 0.0023) survivals, were morphologically compatible with gastric-type adenocarcinoma of the WHO 2020 classification. Conversely, most adenocarcinomas with Müllerian (91%) and intestinal (89%) immunophenotypes were HPV associated and morphologically compatible with usual- or intestinal-type adenocarcinomas of the WHO 2020 classification. The morphology of adenocarcinomas with gastrointestinal immunophenotype was intermediate or mixed between those of gastric and intestinal immunophenotypes; 57% were HPV associated. Adenocarcinomas with NOS immunophenotype were mainly HPV associated (85%) and histologically poorly differentiated. Multivariate analysis revealed that gastric (p = 0.008), intestinal + gastrointestinal (p = 0.0103), and NOS (p = 0.009) immunophenotypes were independent predictors of progression-free survival. Immunophenotypes characterized by CLDN18, CDH17, and PAX8 exhibited clinicopathological relevance and may improve the diagnostic accuracy and prognostic value of conventional histological classification.

Pages

  • « first
  • ‹ previous
  • …
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?