Persistent repression of tau in the brain using engineered zinc finger protein transcription factors
Wegmann, S;DeVos, SL;Zeitler, B;Marlen, K;Bennett, RE;Perez-Rando, M;MacKenzie, D;Yu, Q;Commins, C;Bannon, RN;Corjuc, BT;Chase, A;Diez, L;Nguyen, HB;Hinkley, S;Zhang, L;Goodwin, A;Ledeboer, A;Lam, S;Ankoudinova, I;Tran, H;Scarlott, N;Amora, R;Surosky, R;Miller, JC;Robbins, AB;Rebar, EJ;Urnov, FD;Holmes, MC;Pooler, AM;Riley, B;Zhang, HS;Hyman, BT;
PMID: 33741591 | DOI: 10.1126/sciadv.abe1611
Neuronal tau reduction confers resilience against β-amyloid and tau-related neurotoxicity in vitro and in vivo. Here, we introduce a novel translational approach to lower expression of the tau gene MAPT at the transcriptional level using gene-silencing zinc finger protein transcription factors (ZFP-TFs). Following a single administration of adeno-associated virus (AAV), either locally into the hippocampus or intravenously to enable whole-brain transduction, we selectively reduced tau messenger RNA and protein by 50 to 80% out to 11 months, the longest time point studied. Sustained tau lowering was achieved without detectable off-target effects, overt histopathological changes, or molecular alterations. Tau reduction with AAV ZFP-TFs was able to rescue neuronal damage around amyloid plaques in a mouse model of Alzheimer's disease (APP/PS1 line). The highly specific, durable, and controlled knockdown of endogenous tau makes AAV-delivered ZFP-TFs a promising approach for the treatment of tau-related human brain diseases.
SARS-CoV-2 infection aggravates chronic comorbidities of cardiovascular diseases and diabetes in mice
Animal models and experimental medicine
Ma, Y;Lu, D;Bao, L;Qu, Y;Liu, J;Qi, X;Yu, L;Zhang, X;Qi, F;Lv, Q;Liu, Y;Shi, X;Sun, C;Li, J;Wang, J;Han, Y;Gao, K;Dong, W;Liu, N;Gao, S;Xue, J;Wei, Q;Pan, S;Gao, H;Zhang, L;Qin, C;
PMID: 33738432 | DOI: 10.1002/ame2.12155
Cardiovascular diseases (CVDs) and diabetes mellitus (DM) are top two chronic comorbidities that increase the severity and mortality of COVID-19. However, how SARS-CoV-2 alters the progression of chronic diseases remain unclear. We used adenovirus to deliver h-ACE2 to lung to enable SARS-CoV-2 infection in mice. SARS-CoV-2's impacts on pathogenesis of chronic diseases were studied through histopathological, virologic and molecular biology analysis. Pre-existing CVDs resulted in viral invasion, ROS elevation and activation of apoptosis pathways contribute myocardial injury during SARS-CoV-2 infection. Viral infection increased fasting blood glucose and reduced insulin response in DM model. Bone mineral density decreased shortly after infection, which associated with impaired PI3K/AKT/mTOR signaling. We established mouse models mimicked the complex pathological symptoms of COVID-19 patients with chronic diseases. Pre-existing diseases could impair the inflammatory responses to SARS-CoV-2 infection, which further aggravated the pre-existing diseases. This work provided valuable information to better understand the interplay between the primary diseases and SARS-CoV-2 infection.
Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice
Wu, H;Petitpré, C;Fontanet, P;Sharma, A;Bellardita, C;Quadros, RM;Jannig, PR;Wang, Y;Heimel, JA;Cheung, KKY;Wanderoy, S;Xuan, Y;Meletis, K;Ruas, J;Gurumurthy, CB;Kiehn, O;Hadjab, S;Lallemend, F;
PMID: 33589589 | DOI: 10.1038/s41467-021-21173-9
Proprioceptive neurons (PNs) are essential for the proper execution of all our movements by providing muscle sensory feedback to the central motor network. Here, using deep single cell RNAseq of adult PNs coupled with virus and genetic tracings, we molecularly identify three main types of PNs (Ia, Ib and II) and find that they segregate into eight distinct subgroups. Our data unveil a highly sophisticated organization of PNs into discrete sensory input channels with distinct spatial distribution, innervation patterns and molecular profiles. Altogether, these features contribute to finely regulate proprioception during complex motor behavior. Moreover, while Ib- and II-PN subtypes are specified around birth, Ia-PN subtypes diversify later in life along with increased motor activity. We also show Ia-PNs plasticity following exercise training, suggesting Ia-PNs are important players in adaptive proprioceptive function in adult mice.
Epithelial expression of Gata4 and Sox2 regulates specification of the squamous-columnar junction via MAPK/ERK signaling in mice
Sankoda, N;Tanabe, W;Tanaka, A;Shibata, H;Woltjen, K;Chiba, T;Haga, H;Sakai, Y;Mandai, M;Yamamoto, T;Yamada, Y;Uemoto, S;Kawaguchi, Y;
PMID: 33495473 | DOI: 10.1038/s41467-021-20906-0
The squamous-columnar junction (SCJ) is a boundary consisting of precisely positioned transitional epithelium between the squamous and columnar epithelium. Transitional epithelium is a hotspot for precancerous lesions, and is therefore clinically important; however, the origins and physiological properties of transitional epithelium have not been fully elucidated. Here, by using mouse genetics, lineage tracing, and organoid culture, we examine the development of the SCJ in the mouse stomach, and thus define the unique features of transitional epithelium. We find that two transcription factors, encoded by Sox2 and Gata4, specify primitive transitional epithelium into squamous and columnar epithelium. The proximal-distal segregation of Sox2 and Gata4 expression establishes the boundary of the unspecified transitional epithelium between committed squamous and columnar epithelium. Mechanistically, Gata4-mediated expression of the morphogen Fgf10 in the distal stomach and Sox2-mediated Fgfr2 expression in the proximal stomach induce the intermediate regional activation of MAPK/ERK, which prevents the differentiation of transitional epithelial cells within the SCJ boundary. Our results have implications for tissue regeneration and tumorigenesis, which are related to the SCJ.
STING controls nociception via type I interferon signalling in sensory neurons
Donnelly, CR;Jiang, C;Andriessen, AS;Wang, K;Wang, Z;Ding, H;Zhao, J;Luo, X;Lee, MS;Lei, YL;Maixner, W;Ko, MC;Ji, RR;
PMID: 33442058 | DOI: 10.1038/s41586-020-03151-1
The innate immune regulator STING is a critical sensor of self- and pathogen-derived DNA. DNA sensing by STING leads to the induction of type-I interferons (IFN-I) and other cytokines, which promote immune-cell-mediated eradication of pathogens and neoplastic cells1,2. STING is also a robust driver of antitumour immunity, which has led to the development of STING activators and small-molecule agonists as adjuvants for cancer immunotherapy3. Pain, transmitted by peripheral nociceptive sensory neurons (nociceptors), also aids in host defence by alerting organisms to the presence of potentially damaging stimuli, including pathogens and cancer cells4,5. Here we demonstrate that STING is a critical regulator of nociception through IFN-I signalling in peripheral nociceptors. We show that mice lacking STING or IFN-I signalling exhibit hypersensitivity to nociceptive stimuli and heightened nociceptor excitability. Conversely, intrathecal activation of STING produces robust antinociception in mice and non-human primates. STING-mediated antinociception is governed by IFN-Is, which rapidly suppress excitability of mouse, monkey and human nociceptors. Our findings establish the STING-IFN-I signalling axis as a critical regulator of physiological nociception and a promising new target for treating chronic pain.
Cranial Suture Regeneration Mitigates Skull and Neurocognitive Defects in Craniosynostosis
Yu, M;Ma, L;Yuan, Y;Ye, X;Montagne, A;He, J;Ho, TV;Wu, Y;Zhao, Z;Sta Maria, N;Jacobs, R;Urata, M;Wang, H;Zlokovic, BV;Chen, JF;Chai, Y;
PMID: 33417861 | DOI: 10.1016/j.cell.2020.11.037
Craniosynostosis results from premature fusion of the cranial suture(s), which contain mesenchymal stem cells (MSCs) that are crucial for calvarial expansion in coordination with brain growth. Infants with craniosynostosis have skull dysmorphology, increased intracranial pressure, and complications such as neurocognitive impairment that compromise quality of life. Animal models recapitulating these phenotypes are lacking, hampering development of urgently needed innovative therapies. Here, we show that Twist1+/- mice with craniosynostosis have increased intracranial pressure and neurocognitive behavioral abnormalities, recapitulating features of human Saethre-Chotzen syndrome. Using a biodegradable material combined with MSCs, we successfully regenerated a functional cranial suture that corrects skull deformity, normalizes intracranial pressure, and rescues neurocognitive behavior deficits. The regenerated suture creates a niche into which endogenous MSCs migrated, sustaining calvarial bone homeostasis and repair. MSC-based cranial suture regeneration offers a paradigm shift in treatment to reverse skull and neurocognitive abnormalities in this devastating disease.
Kraiczy, J;McCarthy, N;Malagola, E;Tie, G;Madha, S;Boffelli, D;Wagner, DE;Wang, TC;Shivdasani, RA;
PMID: 37028407 | DOI: 10.1016/j.stem.2023.03.004
Signals from the surrounding niche drive proliferation and suppress differentiation of intestinal stem cells (ISCs) at the bottom of intestinal crypts. Among sub-epithelial support cells, deep sub-cryptal CD81+ PDGFRAlo trophocytes capably sustain ISC functions ex vivo. Here, we show that mRNA and chromatin profiles of abundant CD81- PDGFRAlo mouse stromal cells resemble those of trophocytes and that both populations provide crucial canonical Wnt ligands. Mesenchymal expression of key ISC-supportive factors extends along a spatial and molecular continuum from trophocytes into peri-cryptal CD81- CD55hi cells, which mimic trophocyte activity in organoid co-cultures. Graded expression of essential niche factors is not cell-autonomous but dictated by the distance from bone morphogenetic protein (BMP)-secreting PDGFRAhi myofibroblast aggregates. BMP signaling inhibits ISC-trophic genes in PDGFRAlo cells near high crypt tiers; that suppression is relieved in stromal cells near and below the crypt base, including trophocytes. Cell distances thus underlie a self-organized and polar ISC niche.
Biosensors & bioelectronics
Tian, M;Zhang, R;Li, J;
PMID: 37086563 | DOI: 10.1016/j.bios.2023.115302
In-situ detection provides deep insights into the function of genes and their relationship with diseases by directly visualizing their spatiotemporal behavior. As an emerging in-situ imaging tool, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated bioimaging can localize targets in living and fixed cells. CRISPR-mediated bioimaging has inherent advantages over the gold standard of fluorescent in-situ hybridization (FISH), including fast imaging, cost-effectiveness, and ease of preparation. Existing reviews have provided a detailed classification and overview of the principles of CRISPR-mediated bioimaging. However, the exploitation of potential clinical applicability of this bioimaging technique is still limited. Therefore, analyzing the potential value of CRISPR-mediated in-situ imaging is of great significance to the development of bioimaging. In this review, we initially discuss the available CRISPR-mediated imaging systems from the following aspects: summary of imaging substances, the design and optimization of bioimaging strategies, and factors influencing CRISPR-mediated in-situ detection. Subsequently, we highlight the potential of CRISPR-mediated bioimaging for application in biomedical research and clinical practice. Furthermore, we outline the current bottlenecks and future perspectives of CRISPR-based bioimaging. We believe that this review will facilitate the potential integration of bioimaging-related research with current clinical workflow.
Proceedings of the National Academy of Sciences of the United States of America
He, LN;Chen, S;Yang, Q;Wu, Z;Lao, ZK;Tang, CF;Song, JJ;Liu, XD;Lu, J;Xu, XH;Chen, JJ;Xu, TL;Sun, S;Xu, NJ;
PMID: 36802416 | DOI: 10.1073/pnas.2219952120
Social behavior starts with dynamic approach prior to the final consummation. The flexible processes ensure mutual feedback across social brains to transmit signals. However, how the brain responds to the initial social stimuli precisely to elicit timed behaviors remains elusive. Here, by using real-time calcium recording, we identify the abnormalities of EphB2 mutant with autism-associated Q858X mutation in processing long-range approach and accurate activity of prefrontal cortex (dmPFC). The EphB2-dependent dmPFC activation precedes the behavioral onset and is actively associated with subsequent social action with the partner. Furthermore, we find that partner dmPFC activity is responsive coordinately to the approaching WT mouse rather than Q858X mutant mouse, and the social defects caused by the mutation are rescued by synchro-optogenetic activation in dmPFC of paired social partners. These results thus reveal that EphB2 sustains neuronal activation in the dmPFC that is essential for the proactive modulation of social approach to initial social interaction.
Zanini, F;Che, X;Knutsen, C;Liu, M;Suresh, N;Domingo-Gonzalez, R;Dou, S;Zhang, D;Pryhuber, G;Jones, R;Quake, S;Cornfield, D;Alvira, C;
| DOI: 10.1016/j.isci.2023.106097
At birth, the lung is still immature, heightening susceptibility to injury but enhancing regenerative capacity. Angiogenesis drives postnatal lung development. Therefore, we profiled the transcriptional ontogeny and sensitivity to injury of pulmonary endothelial cells (EC) during early postnatal life. Although subtype speciation was evident at birth, immature lung EC exhibited transcriptomes distinct from mature counterparts, which progressed dynamically over time. Gradual, temporal changes in aerocyte capillary EC (CAP2), contrasted with more marked alterations in general capillary EC (CAP1) phenotype, including distinct CAP1 present only in the early alveolar lung expressing Peg3, a paternally imprinted transcription factor. Hyperoxia, an injury which impairs angiogenesis, induced both common and unique endothelial gene signatures, dysregulated capillary EC cross-talk, and suppressed CAP1 proliferation while stimulating venous EC proliferation. These data highlight the diversity, transcriptomic evolution, and pleiotropic responses to injury of immature lung EC, possessing broad implications for lung development and injury across the lifespan.
Molecular systems biology
Walton, RT;Singh, A;Blainey, PC;
PMID: 36366905 | DOI: 10.15252/msb.202110768
Spatial structure in biology, spanning molecular, organellular, cellular, tissue, and organismal scales, is encoded through a combination of genetic and epigenetic factors in individual cells. Microscopy remains the most direct approach to exploring the intricate spatial complexity defining biological systems and the structured dynamic responses of these systems to perturbations. Genetic screens with deep single-cell profiling via image features or gene expression programs have the capacity to show how biological systems work in detail by cataloging many cellular phenotypes with one experimental assay. Microscopy-based cellular profiling provides information complementary to next-generation sequencing (NGS) profiling and has only recently become compatible with large-scale genetic screens. Optical screening now offers the scale needed for systematic characterization and is poised for further scale-up. We discuss how these methodologies, together with emerging technologies for genetic perturbation and microscopy-based multiplexed molecular phenotyping, are powering new approaches to reveal genotype-phenotype relationships.
Journal of visualized experiments : JoVE
Kerloch, T;Lepko, T;Shkura, K;Guillemot, F;Gillotin, S;
PMID: 36342175 | DOI: 10.3791/64369
Adult Hippocampal Neurogenesis (AHN), which consists of a lifelong maintenance of proliferative and quiescent neural stem cells (NSCs) within the sub-granular zone (SGZ) of the dentate gyrus (DG) and their differentiation from newly born neurons into granule cells in the granule cell layer, is well validated across numerous studies. Using genetically modified animals, particularly rodents, is a valuable tool to investigate signaling pathways regulating AHN and to study the role of each cell type that compose the hippocampal neurogenic niche. To address the latter, methods combining single nuclei isolation with next generation sequencing have had a significant impact in the field of AHN to identify gene signatures for each cell population. Further refinement of these techniques is however needed to phenotypically profile rarer cell populations within the DG. Here, we present a method that utilizes Fluorescence Activated Nuclei Sorting (FANS) to exclude most neuronal populations from a single nuclei suspension isolated from freshly dissected DG, by selecting unstained nuclei for the NeuN antigen, in order to perform single nuclei RNA sequencing (snRNA-seq). This method is a potential steppingstone to further investigate intercellular regulation of the AHN and to uncover novel cellular markers and mechanisms across species.