ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cell
2021 Apr 27
Dani, N;Herbst, RH;McCabe, C;Green, GS;Kaiser, K;Head, JP;Cui, J;Shipley, FB;Jang, A;Dionne, D;Nguyen, L;Rodman, C;Riesenfeld, SJ;Prochazka, J;Prochazkova, M;Sedlacek, R;Zhang, F;Bryja, V;Rozenblatt-Rosen, O;Habib, N;Regev, A;Lehtinen, MK;
PMID: 33932339 | DOI: 10.1016/j.cell.2021.04.003
eNeuro
2022 Jul 20
Claypool, SM;Behdin, S;Applebey, SV;Orihuel, J;Ma, Z;Reiner, DJ;
PMID: 35768212 | DOI: 10.1523/ENEURO.0496-21.2022
Cell
2018 Sep 27
Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett D, Ashley N, Cubitt L, Mellado-Gomez E, Attar M, Sharma E, Wills Q, Bowden R, Richter FC, Ahern D, Puri KD, Henault J, Gervais F, Koohy H, Simmons A.
PMID: - | DOI: 10.1016/j.cell.2018.08.067
Intestinal mesenchymal cells play essential roles in epithelial homeostasis, matrix remodeling, immunity, and inflammation. But the extent of heterogeneity within the colonic mesenchyme in these processes remains unknown. Using unbiased single-cell profiling of over 16,500 colonic mesenchymal cells, we reveal four subsets of fibroblasts expressing divergent transcriptional regulators and functional pathways, in addition to pericytes and myofibroblasts. We identified a niche population located in proximity to epithelial crypts expressing SOX6, F3 (CD142), and WNT genes essential for colonic epithelial stem cellfunction. In colitis, we observed dysregulation of this niche and emergence of an activated mesenchymal population. This subset expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, and Lysyl oxidases. Further, it induced factors that impaired epithelial proliferation and maturation and contributed to oxidative stress and disease severity in vivo. Our work defines how the colonic mesenchyme remodels to fuel inflammation and barrier dysfunction in IBD.
Carleton University
2022 Dec 16
Spencer, C;
| DOI: 10.22215/etd/2022-15217
Science advances
2022 Jun 10
Weil, T;Daly, KM;Yarur Castillo, H;Thomsen, MB;Wang, H;Mercau, ME;Hattar, S;Tejeda, H;Fernandez, DC;
PMID: 35687680 | DOI: 10.1126/sciadv.abn3567
Cell reports
2022 Jun 14
Ademi, H;Djari, C;Mayère, C;Neirijnck, Y;Sararols, P;Rands, CM;Stévant, I;Conne, B;Nef, S;
PMID: 35705036 | DOI: 10.1016/j.celrep.2022.110935
Proc Natl Acad Sci U S A.
2016 Feb 22
Lim X, Tan SH, Yu KL, Lim SB, Nusse R.
PMID: 26903625 | DOI: -
How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation.
Nat Commun.
2018 Feb 27
Faget L, Zell V, Souter E, McPherson A, Ressler R, Gutierrez-Reed N, Yoo JH, Dulcis D, Hnasko TS.
PMID: 29487284 | DOI: 10.1038/s41467-018-03125-y
The ventral pallidum (VP) lies at the interface between sensory, motor, and cognitive processing-with a particular role in mounting behavioral responses to rewards. Though the VP is predominantly GABAergic, glutamate neurons were recently identified, though their relative abundances and respective roles are unknown. Here, we show that VP glutamate neurons are concentrated in the rostral ventromedial VP and project to qualitatively similar targets as do VP GABA neurons. At the functional level, we used optogenetics to show that activity in VP GABA neurons can drive positive reinforcement, particularly through projections to the ventral tegmental area (VTA). On the other hand, activation of VP glutamate neurons leads to behavioral avoidance, particularly through projections to the lateral habenula. These findings highlight cell-type and projection-target specific roles for VP neurons in behavioral reinforcement, dysregulation of which could contribute to the emergence of negative symptoms associated with drug addiction and other neuropsychiatric disease.
Neurochem Int.
2019 Feb 21
Macpherson T, Mizoguchi H, Yamanaka A, Hikida T.
PMID: 30797970 | DOI: 10.1016/j.neuint.2019.02.011
The ventral pallidum (VP) is a critical component of the basal ganglia neurocircuitry regulating learning and decision making; however, its precise role in controlling associative learning of environmental stimuli conditioned to appetitive or aversive outcomes is still unclear. Here, we investigated the expression of preproenkephalin, a polypeptide hormone previously shown to be expressed in nucleus accumbens neurons controlling aversive learning, within GABAergic and glutamatergic VP neurons. Next, we explored the behavioral consequences of chemicogenetic inhibition or excitation of preproenkephalin-expressing VP neurons on associative learning of reward- or aversion-paired stimuli in autoshaping and inhibitory avoidance tasks, respectively. We reveal for the first time that preproenkephalin is expressed predominantly in GABAergic rather than glutamatergic VP neurons, and that excitation of these preproenkephalin-expressing VP neurons was sufficient to impair inhibitory avoidance learning. These findings indicate the necessity for inhibition of preproenkephalin-expressing VP neurons for avoidance learning, and suggest these neurons as a potential therapeutic target for psychiatric disorders associated with maladaptive aversive learning.
Neuron
2019 May 03
Holly EN, Davatolhagh MF, Choi K, Alabi OO, Vargas Cifuentes L, Fuccillo MV.
PMID: 31097361 | DOI: 10.1016/j.neuron.2019.04.016
The dorsomedial striatum (DMS) is critically involved in motor control and reward processing, but the specific neural circuit mediators are poorly understood. Recent evidence highlights the extensive connectivity of low-threshold spiking interneurons (LTSIs) within local striatal circuitry; however, the in vivo function of LTSIs remains largely unexplored. We employed fiber photometry to assess LTSI calcium activity in a range of DMS-mediated behaviors, uncovering specific reward-related activity that is down-modulated during goal-directed learning. Using two mechanistically distinct manipulations, we demonstrated that this down-modulation of LTSI activity is critical for acquisition of novel contingencies, but not for their modification. In contrast, continued LTSI activation slowed instrumental learning. Similar manipulations of fast-spiking interneurons did not reproduce these effects, implying a specific function of LTSIs. Finally, we revealed a role for the γ-aminobutyric acid (GABA)ergic functions of LTSIs in learning. Together, our data provide new insights into this striatal interneuron subclass as important gatekeepers of goal-directed learning.
Elife
2020 Feb 11
Wallace ML, Huang KW, Hochbaum D, Hyun M, Radeljic G, Sabatini BL
PMID: 32043968 | DOI: 10.7554/eLife.51271
Nature communications
2022 Aug 12
Teng, S;Zhen, F;Wang, L;Schalchli, JC;Simko, J;Chen, X;Jin, H;Makinson, CD;Peng, Y;
PMID: 35961989 | DOI: 10.1038/s41467-022-32461-3
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com