Liu, X;Wang, Y;Zeng, Y;Wang, D;Wen, Y;Fan, L;He, Y;Zhang, J;Sun, W;Liu, Y;Tao, A;
PMID: 36876522 | DOI: 10.1111/all.15699
Spinal astrocytes contribute to chronic itch via sensitization of itch-specific neurons expressing gastrin-releasing peptide receptor (GRPR). However, whether microglia-neuron interactions contribute to itch remains unclear. In this study, we aimed to explore how microglia interact with GRPR+ neurons and promote chronic itch.RNA sequencing, quantitative real-time PCR, western blot, immunohistochemistry, RNAscope ISH, pharmacologic and genetic approaches were performed to examine the roles of spinal NLRP3 (The NOD-like receptor family, pyrin-containing domain 3) inflammasome activation and IL-1β-IL1R1 signaling in chronic itch. Grpr-eGFP and Grpr KO mice were used to investigate microglia-GRPR+ neuron interactions.We observed NLRP3 inflammasome activation and IL-1β production in spinal microglia under chronic itch conditions. Blockade of microglial activation and the NLRP3/caspase-1/IL-1β axis attenuated chronic itch and neuronal activation. Type 1 IL-1 receptor (IL-1R1) was expressed in GRPR+ neurons, which are essential for the development of chronic itch. Our studies also find that IL-1β+ microglia are localized in close proximity to GRPR+ neurons. Consistently, intrathecal injection of IL1R1 antagonist or exogenous IL-1β indicate that the IL-1β-IL-1R1 signaling pathway enhanced the activation of GRPR+ neurons. Furthermore, our results demonstrate that the microglial NLRP3/caspase-1/IL-1β axis contributes to several different chronic itches triggered by small molecules and protein allergens from the environment and drugs.Our findings reveal a previously unknown mechanism in which microglia enhances the activation of GRPR+ neurons through the NLRP3/caspase-1/IL-1β/IL1R1 axis. These results will provide new insights into the pathophysiology of pruritus and novel therapeutic strategies for patients with chronic itch.
Stempel AV, Stumpf A, Zhang HY, Özdoğan T, Pannasch U, Theis AK, Otte DM, Wojtalla A, Rácz I, Ponomarenko A, Xi ZX, Zimmer A, Schmitz D.
PMID: 27133464 | DOI: 10.1016/j.neuron.2016.03.034
Endocannabinoids (eCBs) exert major control over neuronal activity by activating cannabinoid receptors (CBRs). The functionality of the eCB system is primarily ascribed to the well-documented retrograde activation of presynaptic CB1Rs. We find that action potential-driven eCB release leads to a long-lasting membrane potential hyperpolarization in hippocampal principal cells that is independent of CB1Rs. The hyperpolarization, which is specific to CA3 and CA2 pyramidal cells (PCs), depends on the activation of neuronal CB2Rs, as shown by a combined pharmacogenetic and immunohistochemical approach. Upon activation, they modulate the activity of the sodium-bicarbonate co-transporter, leading to a hyperpolarization of the neuron. CB2R activation occurred in a purely self-regulatory manner, robustly altered the input/output function of CA3 PCs, and modulated gamma oscillations in vivo. To conclude, we describe a cell type-specific plasticity mechanism in the hippocampus that provides evidence for the neuronal expression of CB2Rs and emphasizes their importance in basic neuronal transmission.
Biochemical and biophysical research communications
Lin, C;Xiao, Z;Zhang, X;Wu, G;
PMID: 35430449 | DOI: 10.1016/j.bbrc.2022.04.034
Circular RNAs (circRNAs) are a class of noncoding RNAs generated by a specific type of RNA alternative splicing called backsplicing through various mechanisms. Recently, thousands of circRNAs have been identified by high-throughput RNA sequencing technologies and bioinformatics analysis. However, the functions of the majority have not been fully elucidated yet. Different tools, such as in situ hybridization, can help visualize the spatial temporal distribution of circRNA molecules, thus assisting the understanding of their biological and physiological functions. Here, we present a simple and straightforward method based on padlock probe hybridization and rolling circle amplification (RCA) for in situ detection of circRNAs. We compared our method with the commercially available BaseScope assay for the detection of Cdr1as in the mouse brain tissue. The result showed that the two methods have achieved comparable detection efficiency, thus demonstrating our padlock probe assay as an alternative yet simple circRNA in situ detection method for the research community.
Mishra D, Richard JE, Maric I, Porteiro B, Häring M, Kooijman S, Musovic S, Eerola K, López-Ferreras L, Peris E, Grycel K, Shevchouk OT, Micallef P, Olofsson CS, Wernstedt Asterholm I, Grill HJ, Nogueiras R, Skibicka KP.
PMID: 30865890 | DOI: 10.1016/j.celrep.2019.02.044
Chronic low-grade inflammation and increased serum levels of the cytokine IL-6 accompany obesity. For brain-produced IL-6, the mechanisms by which it controls energy balance and its role in obesity remain unclear. Here, we show that brain-produced IL-6 is decreased in obese mice and rats in a neuroanatomically and sex-specific manner. Reduced IL-6 mRNA localized to lateral parabrachial nucleus (lPBN) astrocytes, microglia, and neurons, including paraventricular hypothalamus-innervating lPBN neurons. IL-6 microinjection into lPBN reduced food intake and increased brown adipose tissue (BAT) thermogenesis in male lean and obese rats by increasing thyroid and sympathetic outflow to BAT. Parabrachial IL-6 interacted with leptin to reduce feeding. siRNA-mediated reduction of lPBN IL-6 leads to increased weight gain and adiposity, reduced BAT thermogenesis, and increased food intake. Ambient cold exposure partly normalizes the obesity-induced suppression of lPBN IL-6. These results indicate that lPBN-produced IL-6 regulates feeding and metabolism and pinpoints (patho)physiological contexts interacting with lPBN IL-6.
Geraghty AC, Gibson EM, Ghanem RA, Greene JJ, Ocampo A, Goldstein AK, Ni L, Yang T, Marton RM, Paşca SP, Greenberg ME, Longo FM, Monje M.
PMID: 31122677 | DOI: 10.1016/j.neuron.2019.04.032
Activity-dependent myelination is thought to contribute to adaptive neurological function. However, the mechanisms by which activity regulates myelination and the extent to which myelin plasticity contributes to non-motor cognitive functions remain incompletely understood. Using a mouse model of chemotherapy-related cognitive impairment (CRCI), we recently demonstrated that methotrexate (MTX) chemotherapy induces complex glial dysfunction for which microglial activation is central. Here, we demonstrate that remote MTX exposure blocks activity-regulated myelination. MTX decreases cortical Bdnf expression, which is restored by microglial depletion. Bdnf-TrkB signaling is a required component of activity-dependent myelination. Oligodendrocyte precursor cell (OPC)-specific TrkB deletion in chemotherapy-naive mice results in impaired cognitive behavioral performance. A small-molecule TrkB agonist rescues both myelination and cognitive impairment after MTX chemotherapy. This rescue after MTX depends on intact TrkB expression in OPCs. Taken together, these findings demonstrate a molecular mechanism required for adaptive myelination that is aberrant in CRCI due to microglial activation
Wallace ML, Huang KW, Hochbaum D, Hyun M, Radeljic G, Sabatini BL
PMID: 32043968 | DOI: 10.7554/eLife.51271
The lateral habenula (LHb) is an epithalamic brain structure critical for processing and adapting to negative action outcomes. However, despite the importance of LHb to behavior and the clear anatomical and molecular diversity of LHb neurons, the neuron types of the habenula remain unknown. Here, we use high-throughput single-cell transcriptional profiling, monosynaptic retrograde tracing, and multiplexed FISH to characterize the cells of the mouse habenula. We find five subtypes of neurons in the medial habenula (MHb) that are organized into anatomical subregions. In the LHb, we describe four neuronal subtypes and show that they differentially target dopaminergic and GABAergic cells in the ventral tegmental area (VTA). These data provide a valuable resource for future study of habenular function and dysfunction and demonstrate neuronal subtype specificity in the LHb-VTA circuit
Maza, N;Wang, D;Kowalski, C;Stoveken, HM;Dao, M;Sial, OK;Giles, AC;Grill, B;Martemyanov, KA;
PMID: 35982154 | DOI: 10.1038/s41593-022-01135-0
Repeated exposure to opioids causes tolerance, which limits their analgesic utility and contributes to overdose and abuse liability. However, the molecular mechanisms underpinning tolerance are not well understood. Here, we used a forward genetic screen in Caenorhabditis elegans for unbiased identification of genes regulating opioid tolerance which revealed a role for PTR-25/Ptchd1. We found that PTR-25/Ptchd1 controls μ-opioid receptor trafficking and that these effects were mediated by the ability of PTR-25/Ptchd1 to control membrane cholesterol content. Electrophysiological studies showed that loss of Ptchd1 in mice reduced opioid-induced desensitization of neurons in several brain regions and the peripheral nervous system. Mice and C. elegans lacking Ptchd1/PTR-25 display similarly augmented responses to opioids. Ptchd1 knockout mice fail to develop analgesic tolerance and have greatly diminished somatic withdrawal. Thus, we propose that Ptchd1 plays an evolutionarily conserved role in protecting the μ-opioid receptor against overstimulation.
Hong, DS;Van Tine, BA;Biswas, S;McAlpine, C;Johnson, ML;Olszanski, AJ;Clarke, JM;Araujo, D;Blumenschein, GR;Kebriaei, P;Lin, Q;Tipping, AJ;Sanderson, JP;Wang, R;Trivedi, T;Annareddy, T;Bai, J;Rafail, S;Sun, A;Fernandes, L;Navenot, JM;Bushman, FD;Everett, JK;Karadeniz, D;Broad, R;Isabelle, M;Naidoo, R;Bath, N;Betts, G;Wolchinsky, Z;Batrakou, DG;Van Winkle, E;Elefant, E;Ghobadi, A;Cashen, A;Grand'Maison, A;McCarthy, P;Fracasso, PM;Norry, E;Williams, D;Druta, M;Liebner, DA;Odunsi, K;Butler, MO;
PMID: 36624315 | DOI: 10.1038/s41591-022-02128-z
Affinity-optimized T cell receptors can enhance the potency of adoptive T cell therapy. Afamitresgene autoleucel (afami-cel) is a human leukocyte antigen-restricted autologous T cell therapy targeting melanoma-associated antigen A4 (MAGE-A4), a cancer/testis antigen expressed at varying levels in multiple solid tumors. We conducted a multicenter, dose-escalation, phase 1 trial in patients with relapsed/refractory metastatic solid tumors expressing MAGE-A4, including synovial sarcoma (SS), ovarian cancer and head and neck cancer ( NCT03132922 ). The primary endpoint was safety, and the secondary efficacy endpoints included overall response rate (ORR) and duration of response. All patients (N = 38, nine tumor types) experienced Grade ≥3 hematologic toxicities; 55% of patients (90% Grade ≤2) experienced cytokine release syndrome. ORR (all partial response) was 24% (9/38), 7/16 (44%) for SS and 2/22 (9%) for all other cancers. Median duration of response was 25.6 weeks (95% confidence interval (CI): 12.286, not reached) and 28.1 weeks (95% CI: 12.286, not reached) overall and for SS, respectively. Exploratory analyses showed that afami-cel infiltrates tumors, has an interferon-γ-driven mechanism of action and triggers adaptive immune responses. In addition, afami-cel has an acceptable benefit-risk profile, with early and durable responses, especially in patients with metastatic SS. Although the small trial size limits conclusions that can be drawn, the results warrant further testing in larger studies.
Greguske, EA;Maroto, AF;Borrajo, M;Palou, A;Gut, M;Esteve-Codina, A;Barrallo-Gimeno, A;Llorens, J;
PMID: 37100209 | DOI: 10.1016/j.nbd.2023.106134
The vestibular ganglion contains primary sensory neurons that are postsynaptic to the transducing hair cells (HC) and project to the central nervous system. Understanding the response of these neurons to HC stress or loss is of great interest as their survival and functional competence will determine the functional outcome of any intervention aiming at repair or regeneration of the HCs. We have shown that subchronic exposure to the ototoxicant 3,3'-iminodipropionitrile (IDPN) in rats and mice causes a reversible detachment and synaptic uncoupling between the HCs and the ganglion neurons. Here, we used this paradigm to study the global changes in gene expression in vestibular ganglia using RNA-seq. Comparative gene ontology and pathway analyses of the data from both model species indicated a robust downregulation of terms related to synapses, including presynaptic and postsynaptic functions. Manual analyses of the most significantly downregulated transcripts identified genes with expressions related to neuronal activity, modulators of neuronal excitability, and transcription factors and receptors that promote neurite growth and differentiation. For choice selected genes, the mRNA expression results were replicated by qRT-PCR, validated spatially by RNA-scope, or were demonstrated to be associated with decreased expression of the corresponding protein. We conjectured that decreased synaptic input or trophic support on the ganglion neurons from the HC was triggering these expression changes. To support this hypothesis, we demonstrated decreased expression of BDNF mRNA in the vestibular epithelium after subchronic ototoxicity and also downregulated expression of similarly identified genes (e.g Etv5, Camk1g, Slc17a6, Nptx2, Spp1) after HC ablation with another ototoxic compound, allylnitrile. We conclude that vestibular ganglion neurons respond to decreased input from HCs by decreasing the strength of all their synaptic contacts, both as postsynaptic and presynaptic players.
Science Translational Medicine
Frere, J;Serafini, R;Pryce, K;Zazhytska, M;Oishi, K;Golynker, I;Panis, M;Zimering, J;Horiuchi, S;Hoagland, D;Møller, R;Ruiz, A;Kodra, A;Overdevest, J;Canoll, P;Borczuk, A;Chandar, V;Bram, Y;Schwartz, R;Lomvardas, S;Zachariou, V;tenOever, B;
| DOI: 10.1126/scitranslmed.abq3059
The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in prolonged pathologies collectively referred to as post-acute sequalae of COVID-19 (PASC) or long COVID. To better understand the mechanism underlying long COVID biology, we compared the short- and long-term systemic responses in the golden hamster following either SARS-CoV-2 or influenza A virus (IAV) infection. Results demonstrated that SARS-CoV-2 exceeded IAV in its capacity to cause permanent injury to the lung and kidney and uniquely impacted the olfactory bulb (OB) and epithelium (OE). Despite a lack of detectable infectious virus, the OB and OE demonstrated myeloid and T cell activation, proinflammatory cytokine production, and an interferon response that correlated with behavioral changes extending a month post viral clearance. These sustained transcriptional changes could also be corroborated from tissue isolated from individuals who recovered from COVID-19. These data highlight a molecular mechanism for persistent COVID-19 symptomology and provide a small animal model to explore future therapeutics.
Jeon, H;Lee, H;Kwon, DH;Kim, J;Tanaka-Yamamoto, K;Yook, JS;Feng, L;Park, HR;Lim, YH;Cho, ZH;Paek, SH;Kim, J;
PMID: 35235786 | DOI: 10.1016/j.celrep.2022.110439
The subthalamic nucleus (STN) controls psychomotor activity and is an efficient therapeutic deep brain stimulation target in individuals with Parkinson's disease. Despite evidence indicating position-dependent therapeutic effects and distinct functions within the STN, the input circuit and cellular profile in the STN remain largely unclear. Using neuroanatomical techniques, we construct a comprehensive connectivity map of the indirect and hyperdirect pathways in the mouse STN. Our circuit- and cellular-level connectivities reveal a topographically graded organization with three types of indirect and hyperdirect pathways (external globus pallidus only, STN only, and collateral). We confirm consistent pathways into the human STN by 7 T MRI-based tractography. We identify two functional types of topographically distinct glutamatergic STN neurons (parvalbumin [PV+/-]) with synaptic connectivity from indirect and hyperdirect pathways. Glutamatergic PV+ STN neurons contribute to burst firing. These data suggest a complex interplay of information integration within the basal ganglia underlying coordinated movement control and therapeutic effects.
The Journal of experimental medicine
Kaiser, FMP;Gruenbacher, S;Oyaga, MR;Nio, E;Jaritz, M;Sun, Q;van der Zwaag, W;Kreidl, E;Zopf, LM;Dalm, VASH;Pel, J;Gaiser, C;van der Vliet, R;Wahl, L;Rietman, A;Hill, L;Leca, I;Driessen, G;Laffeber, C;Brooks, A;Katsikis, PD;Lebbink, JHG;Tachibana, K;van der Burg, M;De Zeeuw, CI;Badura, A;Busslinger, M;
PMID: 35947077 | DOI: 10.1084/jem.20220498
The genetic causes of primary antibody deficiencies and autism spectrum disorder (ASD) are largely unknown. Here, we report a patient with hypogammaglobulinemia and ASD who carries biallelic mutations in the transcription factor PAX5. A patient-specific Pax5 mutant mouse revealed an early B cell developmental block and impaired immune responses as the cause of hypogammaglobulinemia. Pax5 mutant mice displayed behavioral deficits in all ASD domains. The patient and the mouse model showed aberrant cerebellar foliation and severely impaired sensorimotor learning. PAX5 deficiency also caused profound hypoplasia of the substantia nigra and ventral tegmental area due to loss of GABAergic neurons, thus affecting two midbrain hubs, controlling motor function and reward processing, respectively. Heterozygous Pax5 mutant mice exhibited similar anatomic and behavioral abnormalities. Lineage tracing identified Pax5 as a crucial regulator of cerebellar morphogenesis and midbrain GABAergic neurogenesis. These findings reveal new roles of Pax5 in brain development and unravel the underlying mechanism of a novel immunological and neurodevelopmental syndrome.