ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
The Journal of clinical investigation
2023 Mar 21
Alter, C;Henseler, AS;Owenier, C;Hesse, J;Ding, Z;Lautwein, T;Bahr, J;Hayat, S;Kramann, R;Kostenis, E;Scheller, J;Schrader, J;
PMID: 36943408 | DOI: 10.1172/JCI163799
Nature immunology
2023 Jul 01
Choi, BR;Johnson, KR;Maric, D;McGavern, DB;
PMID: 37248420 | DOI: 10.1038/s41590-023-01521-1
Arthritis Rheumatol. 2015 Apr 27.
Makki MS, Haseeb A, Haqqi TM.
PMID: 25917063 | DOI: 10.1002/art.39173
Cancer Prev Res (Phila). 2015 May 19.
Sfanos KS, Canene-Adams K, Hempel H, Yu SH, Simons B, Schaeffer A, Schaeffer E, Nelson WG, De Marzo AM.
PMID: 10.1016/j.jpurol.2015.04.018
Short KR, Veeris R, Leijten LM, van den Brand JM, Jong VL, Stittelaar K, Osterhaus ADME, Andeweg A, van Riel D.
2017 Jun 16
Short KR, Veeris R, Leijten LM, van den Brand JM, Jong VL, Stittelaar K, Osterhaus ADME, Andeweg A, van Riel D.
PMID: - | DOI: 10.1093/infdis/jix281
Severe influenza is often associated with disease manifestations outside the respiratory tract. Whilst pro-inflammatory cytokines can be detected in the lungs and blood of infected patients, the role of extra-respiratory organs in the production of pro-inflammatory cytokines is unknown. Here, we show that both pandemic H1N1 and highly pathogenic H5N1 virus induce expression of TNFα, IL-6 and IL-8 in the respiratory tract and central nervous system. In addition, H5N1 virus induced cytokines in the heart, pancreas, spleen, liver and jejunum. Together, these data suggest that extra-respiratory tissues contribute to systemic cytokine responses which may increase the severity of influenza.
J Neurosci.
2018 May 14
Periyasamy P, Thangaraj A, Guo ML, Hu G, Callen S, Buch S.
PMID: 29760177 | DOI: 10.1523/JNEUROSCI.3474-17.2018
The present study demonstrates HIV-1 Tat-mediated epigenetic downregulation of microglial miR-124 and its association with microglial activation. Exposure of mouse primary microglia isolated from newborn pups of either sex to HIV-1 Tat resulted in decreased expression of primary miR-124-1, primary miR-124-2 as well as the mature miR-124. In parallel, HIV-1 Tat exposure to mouse primary microglial cellsresulted in increased expression of DNA methylation enzymes, such as DNMT1, DNMT3A, and DNMT3B that were also accompanied by increased global DNA methylation. Bisulfite-converted genomic DNA sequencing in the HIV-1 Tat exposed mouse primary microglial cellsfurther confirmed increased DNA methylation of the primary miR-124-1 and primary miR-124-2 promoters. Bioinformatic analyses identified MECP2 as a novel 3'-UTR target of miR-124. This was further validated in mouse primary microglial cells wherein HIV-1 Tat-mediated downregulation of miR-124 resulted in increased expression of MECP2, leading in turn to further repression of miR-124 via the feedback loop. In addition to MECP2, miR-124 also modulated the levels of STAT3 through its binding to the 3'-UTR, leading to microglial activation. Luciferase assays and Ago2 immunoprecipitation determined the direct binding between miR-124 and 3'-UTR of both MECP2 and STAT3. Gene silencing of MECP2 and DNMT1 and overexpression of miR-124 blocked HIV-1 Tat-mediated downregulation of miR-124 and microglial activation. In vitro findings were also confirmed in the basal ganglia of SIV-infected rhesus macaques (both sexes). In summary, our findings demonstrate a novel mechanism of HIV-1 Tat-mediated activation of microglia via downregulation of miR-124, leading ultimately to increased MECP2 and STAT3 signaling.
SIGNIFICANCE STATEMENT
Despite the effectiveness of combination antiretroviral therapy in controlling viremia, the CNS continues to harbor viral reservoirs. The persistence of low-level virus replication leads to the accumulation of early viral proteins including HIV-1 Tat protein. Understanding the epigenetic/molecular mechanism(s) by which viral proteins such as HIV-1 Tat can activate microglia is thus of paramount importance. This study demonstrated HIV-1 Tat-mediated DNA methylation of the miR-124 promoter leads to its downregulation with a concomitant upregulation of the MECP2-STAT3-IL6 resulting in microglial activation. These findings reveal an unexplored epigenetic/molecular mechanism(s) underlying HIV-1 Tat-mediated microglial activation, thereby providing a potential target for the development of therapeutics aimed at ameliorating microglial activation and neuroinflammation in the context of HIV-1 infection.
Toxicol Pathol.
2016 Jan 03
Brown HR, Castellino S, Groseclose MR, Elangbam CS, Mellon-Kusibab K, Yoon LW, Gates LD, Krull DL, Cariello NF, Arrington-Brown L, Tillman T, Fowler S, Shah V, Bailey D, Miller RT.
PMID: 26733602 | DOI: -
Nevirapine (NVP) is associated with hepatotoxicity in 1-5% of patients. In rodent studies, NVP has been shown to cause hepatic enzyme induction, centrilobular hypertrophy, and skin rash in various rat strains but not liver toxicity. In an effort to understand whether NVP is metabolized differently in a transiently inflamed liver and whether a heightened immune response alters NVP-induced hepatic responses, female brown Norway rats were dosed with either vehicle or NVP alone (75 mg/kg/day for 15 days) or galactosamine alone (single intraperitoneal [ip] injection on day 7 to mimic viral hepatitis) or a combination of NVP (75/100/150 mg/kg/day for 15 days) and galactosamine (single 750 mg/kg ip on day 7). Livers were collected at necropsy for histopathology, matrix-assisted laser desorption/ionization imaging mass spectrometry and gene expression. Eight days after galactosamine, hepatic fibrosis was noted in rats dosed with the combination of NVP and galactosamine. No fibrosis occurred with NVP alone or galactosamine alone. Gene expression data suggested a viral-like response initiated by galactosamine via RNA sensors leading to apoptosis, toll-like receptor, and dendritic cell responses. These were exacerbated by NVP-induced growth factor, retinol, apoptosis, and periostin effects. This finding supports clinical reports warning against exacerbation of fibrosis by NVP in patients with hepatitis C.
Scientific reports
2022 Nov 12
Becker, K;Weigelt, CM;Fuchs, H;Viollet, C;Rust, W;Wyatt, H;Huber, J;Lamla, T;Fernandez-Albert, F;Simon, E;Zippel, N;Bakker, RA;Klein, H;Redemann, NH;
PMID: 36371417 | DOI: 10.1038/s41598-022-23065-4
Nature communications
2022 May 31
Peisker, F;Halder, M;Nagai, J;Ziegler, S;Kaesler, N;Hoeft, K;Li, R;Bindels, EMJ;Kuppe, C;Moellmann, J;Lehrke, M;Stoppe, C;Schaub, MT;Schneider, RK;Costa, I;Kramann, R;
PMID: 35641541 | DOI: 10.1038/s41467-022-30682-0
iScience
2021 Oct 01
Rascle, P;Jacquelin, B;Petitdemange, C;Contreras, V;Planchais, C;Lazzerini, M;Dereuddre-Bosquet, N;Le Grand, R;Mouquet, H;Huot, N;Müller-Trutwin, M;
| DOI: 10.1016/j.isci.2021.103109
Basic Res Cardiol.
2019 Jan 23
Kraft L, Erdenesukh T, Sauter M, Tschöpe C, Klingel K.
PMID: 30673858 | DOI: 10.1007/s00395-019-0719-0
Coxsackieviruses of group B (CVB) are well-known causes of acute and chronic myocarditis. Chronic myocarditis can evolve into dilated cardiomyopathy (DCM) characterized by fibrosis and cardiac remodeling. Interleukin-1β (IL-1β) plays a decisive role in the induction of the inflammatory response as a consequence of viral replication. In this study, we analyzed the effects of IL-1β neutralization on the transition of acute to chronic myocarditis in a mouse model of CVB3 myocarditis. Mice were treated with an anti-murine IL-1β antibody as a surrogate for Canakinumab at different time points post CVB3 infection. Treatment was performed in the early phase (day 1-14 pi, day 3-14 pi) or at a later stage of myocarditis (day 14-28 pi). Subsequently, the hearts were examined histologically, immunohistochemically and by molecular biology. A significant reduction of viral replication, cardiac damage and inflammation was found after administration of the antibody in the early phase and in the later phase of infection. Furthermore, less collagen I deposition and a considerable reduction of fibrosis were found in antibody-treated mice. Using microarray analysis, a significant upregulation of various extracellular matrix and fibrosis-associated molecules was found in CVB3-infected mice, including TGF-β, TIMP-1 and MMP12, as well as diverse matricellular proteins, whereas, these molecules were significantly downregulated in all IL-1β antibody-treated infected mice. Neutralization of IL-1β at different stages of enteroviral infection prevents the development of chronic viral myocarditis by reducing inflammation, interstitial fibrosis and adverse cardiac remodeling. These findings are relevant for the treatment of patients with acute and chronic myocarditis.
International journal of biological sciences
2023 Jan 01
Wang, Z;Ma, C;Chen, D;Haslett, C;Xu, C;Dong, C;Wang, X;Zheng, M;Jing, Y;Feng, JQ;
PMID: 36594083 | DOI: 10.7150/ijbs.79007
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com