IL-6 expression helps distinguish Castleman\'s disease from IgG4-related disease in the lung
Kinugawa, Y;Uehara, T;Iwaya, M;Asaka, S;Kobayashi, S;Nakajima, T;Komatsu, M;Yasuo, M;Yamamoto, H;Ota, H;
PMID: 34246246 | DOI: 10.1186/s12890-021-01603-6
It is difficult to distinguish between multicentric Castleman's disease (MCD) and IgG4-related lung disease (IgG4-LD), an IgG4-related disease (IgG4-RD) in the lung.We focused on IL-6, which is elevated in MCD, to distinguish between MCD and IgG4-LD by RNAscope, a highly sensitive RNA in situ method. Six cases of MCD and four cases of IgG4-LD were selected.In all cases of MCD and IgG4-LD, 10 or more IgG4-positive cells were found in one high-power field. All MCD cases were inconsistent with the pathological IgG4-related comprehensive diagnostic criteria, but 2 of 6 cases had an IgG4/IgG ratio greater than 40%. In all IgG4-LD cases, histological features were consistent with the pathological IgG4-RD comprehensive diagnostic criteria. IL-6 expression was observed in all MCD and IgG4-LD cases except for one IgG4-LD biopsy. IL-6-expressing cells were mainly identified in the stroma. Sites of IL-6 expression were not characteristic and were sparse. IL-6 expression tended to be higher in MCD compared with IgG4-LD. A positive correlation was found between the IL-6 H-score and serum IL-6 level.Differences in IL-6 expression may help distinguish between MCD and IgG4-LD. In addition, the presence of high IL-6 levels may help elucidate the pathological mechanisms of IgG4-LD.
Nature. 2014 Dec 4;516(7529):121-5.
Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C, Petrus M, Mathur J, Bégay V, Coste B, Mainquist J, Wilson AJ, Francisco AG, Reddy K, Qiu Z, Wood JN, Lewin GR, Patapoutian A.
PMID: 25471886 | DOI: 10.1038/nature13980.
The sense of touch provides critical information about our physical environment by transforming mechanical energy into electrical signals1. It is postulated that mechanically activated cation channels initiate touch sensation, but the identity of these molecules in mammals has been elusive2. Piezo2 is a rapidly adapting, mechanically activated ion channel expressed in a subset of sensory neurons of the dorsal root ganglion and in cutaneous mechanoreceptors known as Merkel-cell–neurite complexes3, 4. It has been demonstrated that Merkel cells have a role in vertebrate mechanosensation using Piezo2, particularly in shaping the type of current sent by the innervating sensory neuron4, 5, 6; however, major aspects of touch sensation remain intact without Merkel cell activity4, 7. Here we show that mice lacking Piezo2 in both adult sensory neurons and Merkel cells exhibit a profound loss of touch sensation. We precisely localize Piezo2 to the peripheral endings of a broad range of low-threshold mechanoreceptors that innervate both hairy and glabrous skin. Most rapidly adapting, mechanically activated currents in dorsal root ganglion neuronal cultures are absent in Piezo2 conditional knockout mice, and ex vivo skin nerve preparation studies show that the mechanosensitivity of low-threshold mechanoreceptors strongly depends on Piezo2. This cellular phenotype correlates with an unprecedented behavioural phenotype: an almost complete deficit in light-touch sensation in multiple behavioural assays, without affecting other somatosensory functions. Our results highlight that a single ion channel that displays rapidly adapting, mechanically activated currents in vitro is responsible for the mechanosensitivity of most low-threshold mechanoreceptor subtypes involved in innocuous touch sensation. Notably, we find that touch and pain sensation are separable, suggesting that as-yet-unknown mechanically activated ion channel(s) must account for noxious (painful) mechanosensation.
Otani K, Inoue D, Fujikura K, Komori T, Abe-Suzuki S, Tajiri T, Itoh T, Zen Y.
PMID: - | DOI: 10.18632/oncotarget.24068
The present study aimed to compare clinicopathologic features between idiopathic multicentric Castleman’s disease (n=22) and IgG4-related disease (n=26). Histology was analyzed using lymph node and lung biopsies. The expression of IL-6 mRNA in tissue was also examined by in situ hybridization and real-time PCR. Patients with idiopathic multicentric Castleman’s disease were significantly younger than those with IgG4-related disease (p<0.001). Splenomegaly was observed in only idiopathic multicentric Castleman’s disease (p=0.002), while pancreatitis and sialo-dacryoadenitis were restricted to IgG4-related disease (both p<0.001). Serum IgG4 concentrations were commonly elevated at >135 mg/dL in both groups (p=0.270). However, the IgG4/IgG ratio in IgG4-related disease was significantly higher than that in Castleman’s disease (p<0.001). Histologically, sheet-like plasmacytosis was highly characteristic of idiopathic multicentric Castleman’s disease (p<0.001), while plasmacytic infiltration in IgG4-related disease was always associated with intervening lymphocytes. Similar to laboratory findings, the IgG4/IgG-positive plasma cell ratio, but not the IgG4-positive cell count, was significantly higher in IgG4-related disease (p=0.002). Amyloid-like hyalinized fibrosis was found in 6/8 lung biopsies (75%) of Castleman’s disease. The over-expression of IL-6 mRNA was not confirmed in tissue samples of Castleman’s disease by either in situhybridization or quantitative real-time PCR. In conclusion, useful data for a differential diagnosis appear to be age, affected organs, the serum IgG4/IgG ratio, sheet-like plasmacytosis in biopsies, and the IgG4/IgG-positive cell ratio on immunostaining. Since IL-6 was not over-expressed in tissue of idiopathic multicentric Castleman’s disease, IL-6 may be produced outside the affected organs, and circulating IL-6 may lead to lymphoplasmacytosis at nodal and extranodal sites.
Sheahan, BJ;Theriot, CM;Cortes, JE;Dekaney, CM;
PMID: 35012435 | DOI: 10.1080/19490976.2021.2018898
Acute intestinal mucositis is a common off-target effect of chemotherapy, leading to co-morbidities such as vomiting, diarrhea, sepsis, and death. We previously demonstrated that the presence of enteric bacteria modulates the extent of jejunal epithelial damage induced by doxorubicin (DXR) in mice. Despite conventional thinking of the crypt as a sterile environment, recent evidence suggests that bacterial signaling influences aISC function. In this study, we labeled aISCs using transgenic Lgr5-driven fluorescence or with immunostaining for OLFM4. We examined the effect of DXR in both germ free (GF) mice and mice depleted of microbiota using an established antimicrobial treatment protocol (AMBx). We found differences in DXR-induced loss of aISCs between GF mice and mice treated with AMBx. aISCs were decreased after DXR in GF mice, whereas AMBx mice retained aISC expression after DXR. Neither group of mice exhibited an inflammatory response to DXR, suggesting the difference in aISC retention was not due to differences in local tissue inflammation. Therefore, we suspected that there was a protective microbial signal present in the AMBx mice that was not present in the GF mice. 16S rRNA sequencing of jejunal luminal contents demonstrated that AMBx altered the fecal and jejunal microbiota. In the jejunal contents, AMBx mice had increased abundance of Ureaplasma and Burkholderia. These results suggest pro-survival signaling from microbiota in AMBx-treated mice to the aISCs, and that this signaling maintains aISCs in the face of chemotherapeutic injury. Manipulation of the enteric microbiota presents a therapeutic target for reducing the severity of chemotherapy-associated mucositis.
Abstract Aims Intestinal stem cell (ISC) markers such as LGR5, ASCL2, EPHB2 and OLFM4 and their clinical implications have been extensively studied in colorectal cancers (CRCs). However, little is known about their expression in precancerous lesions of CRCs. Here, we investigated the expression and distribution of ISC markers in serrated polyps and conventional adenomas. Methods and results RT-PCR analysis revealed that all ISC markers were significantly upregulated in conventional adenomas with low grade dysplasia (CALGs) compared with other lesions. RNA in situ hybridization confirmed that CALGs exhibited strong and diffuse expression of all ISC markers, which indicate a stem cell-like phenotype. However, normal colonic mucosa hyperplastic polyps and sessile serrated adenomas harbored LGR5+ cells that were confined to the crypt base and demonstrated an organized expression of ISC markers. Notably, in traditional serrated adenomas, expression of LGR5 and ASCL2 was localized to the ectopic crypts as in the normal crypts, but expression of EPHB2 and OLFM4 was distributed in a diffuse manner, which is suggestive of a progenitor-like features. Conclusions The expression and distribution profile of ISC markers possibly provides insights into the organization of stem and progenitor-like cells in each type of precancerous lesion of CRC
Sauter MM, Brandt CR.
PMID: 27170050 | DOI: 10.1016/j.exer.2016.05.003
Injection of herpes simplex virus vectors into the vitreous of primate eyes induces an acute, transient uveitis. The purpose of this study was to characterize innate immune responses of macaque neural retina tissue to the herpes simplex virus type 1-based gene delivery vector hrR3. PCR array analysis demonstrated the induction of the pro-inflammatory cytokine IL-6, as well as the anti-inflammatory cytokine IL-10, following hrR3 exposure. Secretion of IL-6 was detected by ELISA and cone photoreceptors and Muller cells were the predominant IL-6 positive cell types. RNA in situ hybridization confirmed that IL-6 was expressed in photoreceptor and Muller cells. The IL-10 positive cells in the inner nuclear layer were identified as amacrine cells by immunofluorescence staining with calretinin antibody. hrR3 challenge resulted in activation of NFκB (p65) in Muller glial cells, but not in cone photoreceptors, suggesting a novel regulatory mechanism for IL-6 expression in cone cells. hrR3 replication was not required for IL-6 induction or NFκB (p65) activation. These data suggest a pro-inflammatory (IL-6)/anti-inflammatory (IL-10) axis exists in neural retina and the severity of acute posterior uveitis may be determined by this interaction. Further studies are needed to identify the trigger for IL-6 and IL-10 induction and the mechanism of IL-6 induction in cone cells.
Cooley, A;Madhukaran, S;Stroebele, E;Colon Caraballo, M;Wang, L;Akgul, Y;Hon, GC;Mahendroo, M;
PMID: 36718364 | DOI: 10.1016/j.isci.2023.105953
The cervical epithelium undergoes changes in proliferation, differentiation, and function that are critical to ensure fertility and maintain pregnancy. Here, we identify cervical epithelial subtypes in non-pregnant, pregnant, and in labor mice using single-cell transcriptome and spatial analysis. We identify heterogeneous subpopulations of epithelia displaying spatial and temporal specificity. Notably in pregnancy, two goblet cell subtypes are present in the most luminal layers with one goblet population expanding earlier in pregnancy than the other goblet population. The goblet populations express novel protective factors and distinct mucosal networks. Single-cell analysis in a model of cervical epithelial barrier disruption indicates untimely basal cell proliferation precedes the expansion of goblet cells with diminished mucosal integrity. These data demonstrate how the cervical epithelium undergoes continuous remodeling to maintain dynamic states of homeostasis in pregnancy and labor, and provide a framework to understand perturbations in epithelial health that increase the risk of premature birth.
The Journal of general physiology
Nourse, JL;Leung, VM;Abuwarda, H;Evans, EL;Izquierdo-Ortiz, E;Ly, AT;Truong, N;Smith, S;Bhavsar, H;Bertaccini, G;Monuki, ES;Panicker, MM;Pathak, MM;
PMID: 36069933 | DOI: 10.1085/jgp.202213084
Mechanical forces and tissue mechanics influence the morphology of the developing brain, but the underlying molecular mechanisms have been elusive. Here, we examine the role of mechanotransduction in brain development by focusing on Piezo1, a mechanically activated ion channel. We find that Piezo1 deletion results in a thinner neuroepithelial layer, disrupts pseudostratification, and reduces neurogenesis in E10.5 mouse embryos. Proliferation and differentiation of Piezo1 knockout (KO) mouse neural stem cells (NSCs) isolated from E10.5 embryos are reduced in vitro compared to littermate WT NSCs. Transcriptome analysis of E10.5 Piezo1 KO brains reveals downregulation of the cholesterol biosynthesis superpathway, in which 16 genes, including Hmgcr, the gene encoding the rate-limiting enzyme of the cholesterol biosynthesis pathway, are downregulated by 1.5-fold or more. Consistent with this finding, membrane lipid composition is altered, and the cholesterol levels are reduced in Piezo1 KO NSCs. Cholesterol supplementation of Piezo1 KO NSCs partially rescues the phenotype in vitro. These findings demonstrate a role for Piezo1 in the neurodevelopmental process that modulates the quantity, quality, and organization of cells by influencing cellular cholesterol metabolism. Our study establishes a direct link in NSCs between PIEZO1, intracellular cholesterol levels, and neural development.
Cloft, SE;Kinstler, SR;Reno, KE;Sellers, HS;Franca, M;Ecco, R;Lee, MD;Maurer, JJ;Wong, EA;
PMID: 35191652 | DOI: 10.1637/21-00109
Runting stunting syndrome (RSS) in broiler chickens is characterized by altered intestinal morphology and gene expression and stunted growth. The objective of this study was to conduct a retrospective study of gene expression in stem and differentiated cells in the small intestine of RSS chicks. Two different models of RSS were analyzed: broiler chicks that were experimentally infected and broiler chicks that were naturally infected. Experimentally infected chicks were exposed to litter from infected flocks (RSS-litter chicks) or infected with astrovirus (RSS-astrovirus chicks). Intestinal samples from naturally infected chicks showing clinical signs of RSS were acquired from commercial farms in Georgia and were brought into a poultry diagnostic lab (RSS-clinical-GA) and from farms in Brazil that had a history of RSS (RSS-clinical-BR). The RSS-clinical-BR chicks were separated into those that were positive or negative for gallivirus based on DNA sequencing. Intestinal morphology and intestinal cell type were identified in archived formalin-fixed, paraffin-embedded tissues. In situ hybridization for cell-specific mRNA was used to identify intestinal stem cells expressing olfactomedin 4 (Olfm4), proliferating cells expressing Ki67, absorptive cells expressing sodium glucose cotransporter 1 (SGLT1) and peptide transporter 1 (PepT1), and goblet cells expressing mucin 2 (Muc2). RSS-litter and RSS-clinical-GA chicks showed 4% to 7.5% cystic crypts, while gallivirus-positive RSS-clinical-BR chicks showed 11.7% cystic crypts. RSS-astrovirus and gallivirus-negative RSS-clinical-BR chicks showed few cystic crypts. RSS-litter and gallivirus-positive RSS-clinical-BR chicks showed an increase in crypt depth compared to control or gallivirus-negative chicks, respectively. There was no expression of Olfm4 mRNA in the stem cells of RSS-litter and RSS-clinical-GA chicks, in contrast to the normal expression of Olfm4 mRNA in RSS-astrovirus and RSS-clinical-BR chicks. All chicks regardless of infection status showed normal expression of Ki67 mRNA in crypt cells, Muc2 mRNA in goblet cells, and SGLT1 or PepT1 mRNA in enterocytes. These results demonstrate that RSS, which can be induced by different etiologies, can show differences in the expression of the stem cell marker Olfm4.
Lee, P;Ha, T;Choi, H;Lee, S;Kim, H;Kim, C;Hong, G;
| DOI: 10.2139/ssrn.4392157
Mechanosensation begins with the sensing of pressure by mechanically activated (MA) channels in the nerve endings of dorsal root ganglion (DRG) neurons. Piezo1, a fast-inactivating MA channel, has surfaced to be involved in pruriception. However, the pressure-dependent activation mechanism and its physiological role in mechanical pain remain unidentified. Here, we report that _Piezo1_ is expressed in a small DRG subpopulation, which is largely positive for _TRPV1_ rather than _MRGPRD_, which is known for nociceptors. To investigate the molecular function of _Piezo1_ in DRG neurons, we reclassified DRG neurons based on the MA current type. The silencing of the _Piezo1_ gene resulted in two subgroups—intermediately adapting (IA) and intermediately slowly adapting (ISA) responders of DRG neurons. Silencing _Piezo1_ in mice via specific lumbar DRG-targeted ganglionic injection of shRNA virus reduced tactile pain hypersensitivity in formalin- and carrageenan-dependent inflammation. _Piezo1_ mediates mechanical pain by acting as a nociceptive MA channel.
Nonomura K, Woo SH, Chang RB, Gillich A, Qiu Z, Francisco AG, Ranade SS, Liberles SD, Patapoutian A.
PMID: 28002412 | DOI: 10.1038/nature20793
Respiratory dysfunction is a notorious cause of perinatal mortality in infants and sleep apnoea in adults, but the mechanisms of respiratory control are not clearly understood. Mechanical signals transduced by airway-innervating sensory neurons control respiration; however, the physiological significance and molecular mechanisms of these signals remain obscured. Here we show that global and sensory neuron-specific ablation of the mechanically activated ion channel Piezo2 causes respiratory distress and death in newborn mice. Optogenetic activation of Piezo2+ vagal sensory neurons causes apnoea in adult mice. Moreover, induced ablation of Piezo2 in sensory neurons of adult mice causes decreased neuronal responses to lung inflation, an impaired Hering-Breuer mechanoreflex, and increased tidal volume under normal conditions. These phenotypes are reproduced in mice lacking Piezo2 in the nodose ganglion. Our data suggest that Piezo2 is an airway stretch sensor and that Piezo2-mediated mechanotransduction within various airway-innervating sensory neurons is critical for establishing efficient respiration at birth and maintaining normal breathing in adults.
Choi, BR;Johnson, KR;Maric, D;McGavern, DB;
PMID: 37248420 | DOI: 10.1038/s41590-023-01521-1
Cerebrovascular injury (CVI) is a common pathology caused by infections, injury, stroke, neurodegeneration and autoimmune disease. Rapid resolution of a CVI requires a coordinated innate immune response. In the present study, we sought mechanistic insights into how central nervous system-infiltrating monocytes program resident microglia to mediate angiogenesis and cerebrovascular repair after an intracerebral hemorrhage. In the penumbrae of human stroke brain lesions, we identified a subpopulation of microglia that express vascular endothelial growth factor A. These cells, termed 'repair-associated microglia' (RAMs), were also observed in a rodent model of CVI and coexpressed interleukin (IL)-6Ra. Cerebrovascular repair did not occur in IL-6 knockouts or in mice lacking microglial IL-6Ra expression and single-cell transcriptomic analyses revealed faulty RAM programming in the absence of IL-6 signaling. Infiltrating CCR2+ monocytes were the primary source of IL-6 after a CVI and were required to endow microglia with proliferative and proangiogenic properties. Faulty RAM programming in the absence of IL-6 or inflammatory monocytes resulted in poor cerebrovascular repair, neuronal destruction and sustained neurological deficits that were all restored via exogenous IL-6 administration. These data provide a molecular and cellular basis for how monocytes instruct microglia to repair damaged brain vasculature and promote functional recovery after injury.