ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Brain, behavior, and immunity
2022 Jan 18
Lehmann, ML;Samuels, JD;Kigar, SL;Poffenberger, CN;Lotstein, ML;Herkenham, M;
PMID: 35063606 | DOI: 10.1016/j.bbi.2022.01.011
J Pathol.
2018 Jun 10
Kazantseva M, Eiholzer RA, Mehta S, Taha A, Bowie S, Roth I, Zhou J, Joruiz SM, Royds JA, Hung NA, Slatter TL, Braithwaite AW.
PMID: 29888503 | DOI: 10.1002/path.5111
As tumour protein 53 (p53) isoforms have tumour promoting, migration and inflammatory properties, this study investigated whether p53 isoforms contributed to glioblastoma progression. The expression levels of full-length TP53α (TAp53α) and six TP53 isoforms were quantitated by RT-qPCR in 89 glioblastomas and correlated with TP53 mutation status, tumour-associated macrophage content and various immune cell markers. Elevated levels of Δ133p53β mRNA characterised glioblastomas with increased CD163-positive macrophages and wild-type TP53. In situ based analyses found Δ133p53β expression localised to malignant cells in areas with increased hypoxia, and in cells with the monocyte chemoattractant protein C-C motif chemokine ligand 2 (CCL2) expressed. Tumours with increased Δ133p53β had increased numbers of cell positive for macrophage colony stimulating factor 1 receptor (CSF1R) and programmed death ligand 1 (PDL1). In addition, cells expressing a murine 'mimic' of Δ133p53 (Δ122p53) were resistant to temozolomide treatment and oxidative stress. Our findings suggest elevated Δ133p53β is an alternative pathway to TP53 mutation in glioblastoma that aids tumour progression by promoting an immunosuppressive and chemoresistant environment. Adding Δ133p53β to a TP53 signature along with TP53 mutation status will better predict treatment resistance in glioblastoma.
Nature Aging
2022 Jul 01
Ichijo, R;Maki, K;Kabata, M;Murata, T;Nagasaka, A;Ishihara, S;Haga, H;Honda, T;Adachi, T;Yamamoto, T;Toyoshima, F;
| DOI: 10.1038/s43587-022-00244-6
JCI insight
2021 Aug 31
Dalghi, MG;Ruiz, WG;Clayton, DR;Montalbetti, N;Daugherty, SL;Beckel, JM;Carattino, MD;Apodaca, G;
PMID: 34464353 | DOI: 10.1172/jci.insight.152984
Molecular therapy : the journal of the American Society of Gene Therapy
2021 Jul 15
Han, B;Alonso-Valenteen, F;Wang, Z;Deng, N;Lee, TY;Gao, B;Zhang, Y;Xu, Y;Zhang, X;Billet, S;Fan, X;Shiao, S;Bhowmick, N;Medina-Kauwe, L;Giuliano, A;Cui, X;
PMID: 34274535 | DOI: 10.1016/j.ymthe.2021.07.003
Nat Neurosci.
2015 Nov 09
Woo SH, Lukacs V, de Nooij JC, Zaytseva D, Criddle CR, Francisco A, Jessell TM, Wilkinson KA, Patapoutian A.
PMID: 26551544 | DOI: 10.1038/nn.4162.
Proprioception, the perception of body and limb position, is mediated by proprioceptors, specialized mechanosensory neurons that convey information about the stretch and tension experienced by muscles, tendons, skin and joints. In mammals, the molecular identity of the stretch-sensitive channel that mediates proprioception is unknown. We found that the mechanically activated nonselective cation channel Piezo2 was expressed in sensory endings of proprioceptors innervating muscle spindles and Golgi tendon organs in mice. Two independent mouse lines that lack Piezo2 in proprioceptive neurons showed severely uncoordinated body movements and abnormal limb positions. Moreover, the mechanosensitivity of parvalbumin-expressing neurons that predominantly mark proprioceptors was dependent on Piezo2 expression in vitro, and the stretch-induced firing of proprioceptors in muscle-nerve recordings was markedly reduced in Piezo2-deficient mice. Together, our results indicate that Piezo2 is the major mechanotransducer of mammalian proprioceptors.
Neuron
2022 Dec 29
Shi, Z;Yu, P;Lin, WJ;Chen, S;Hu, X;Chen, S;Cheng, J;Liu, Q;Yang, Y;Li, S;Zhang, Z;Xie, J;Jiang, J;He, B;Li, Y;Li, H;Xu, Y;Zeng, J;Huang, J;Mei, J;Cai, J;Chen, J;Wu, LJ;Ko, H;Tang, Y;
PMID: 36603584 | DOI: 10.1016/j.neuron.2022.12.009
Hum Pathol.
2018 Jul 31
Coppock JD, Volaric AK, Mills AM, Gru AA.
PMID: 30075155 | DOI: 10.1016/j.humpath.2018.07.025
Targeted inhibition of programmed cell death-1 (PD-1) and its ligand (PD-L1) has emerged as first-line therapy for advanced non-small cell lung cancer. While patients with high PD-L1 expression have improved outcomes with anti-PD-1/PD-L1 directed therapies, use as a predictive biomarker is complicated by robust responses in some patients with low-level expression. Furthermore, reported PD-L1 levels in lung cancers vary widely and discrepancies exist with different antibodies. PD-L1 expression was thus compared by immunohistochemistry (IHC) versus RNA in situ hybridization (ISH) in 112 lung cancers by tissue microarray: 51 adenocarcinoma, 42 squamous cell carcinoma, 9 adenosquamous carcinoma, 5 carcinoid, 3 undifferentiated large-cell carcinoma, 1 large-cell neuroendocrine carcinoma, and 1 small cell carcinoma. At least 1% tumor cell staining was considered positive in each modality. A positive concordance of only 60% (67/112) was found between IHC and ISH. 50% (56/112) were positive by IHC and 50% (56/112) by ISH, however 20% (22/112) were ISH positive but IHC negative. Conversely, 21% (23/112) were IHC positive but ISH negative. There was no significant stratification of PD-L1 positivity by histologic subtype. A trend of more PD-L1 positive stage I cancers identified by ISH versus IHC was observed, however was not statistically significant [50% (27/54) by IHC and 64% (35/55) by ISH, P=.18]. No significant difference in survival was identified, with an average of 5.3months in IHC versus 5.2months in ISH positive cases. The results demonstrate discordance between PD-L1 RNA levels and protein expression in non-small cell lung cancers, warranting comparison as predictive biomarkers.
Oncotarget
2017 Jan 27
Wu S, Shi X, Sun J, Liu Y, Luo Y, Liang Z, Wang J, Zeng X.
PMID: 28145884 | DOI: 10.18632/oncotarget.14851
Sci Rep.
2019 Feb 11
Hennes A, Held K, Boretto M, De Clercq K, Van den Eynde C, Vanhie A, Van Ranst N, Benoit M, Luyten C, Peeraer K, Tomassetti C, Meuleman C, Voets T, Vankelecom H, Vriens J.
PMID: 30741991 | DOI: 10.1038/s41598-018-38376-8
Successful pregnancy requires the establishment of a complex dialogue between the implanting embryo and the endometrium. Knowledge regarding molecular candidates involved in this early communication process is inadequate due to limited access to primary human endometrial epithelial cells (EEC). Since pseudo-pregnancy in rodents can be induced by mechanical scratching of an appropriately primed uterus, this study aimed to investigate the expression of mechanosensitive ion channels in EEC. Poking of EEC provoked a robust calcium influx and induced an increase in current densities, which could be blocked by an inhibitor of mechanosensitive ion channels. Interestingly, RNA expression studies showed high expression of PIEZO1 in EEC of mouse and human. Additional analysis provided further evidence for the functional expression of PIEZO1 since stimulation with Yoda1, a chemical agonist of PIEZO1, induced increases in intracellular calcium concentrations and current densities in EEC. Moreover, the ion channel profile of human endometrial organoids (EMO) was validated as a representative model for endometrial epithelial cells. Mechanical and chemical stimulation of EMO induced strong calcium responses supporting the hypothesis of mechanosensitive ion channel expression in endometrial epithelial cells. In conclusion, EEC and EMO functionally express the mechanosensitive PIEZO1 channel that could act as a potential target for the development of novel treatments to further improve successful implantation processes.
Veterinary immunology and immunopathology
2023 Mar 01
Murphy, JD;Shiomitsu, K;Milner, RJ;Lejeune, A;Ossiboff, RJ;Gell, JC;Axiak-Bechtel, S;
PMID: 36804838 | DOI: 10.1016/j.vetimm.2023.110560
Mod Pathol.
2017 Dec 22
Tretiakova M, Fulton R, Kocherginsky M, Long T, Ussakli C, Antic T, Gown A.
PMID: 29271413 | DOI: 10.1038/modpathol.2017.188
Therapy with anti-PD-L1 immune check-point inhibitors is approved for several cancers, including advanced urothelial carcinomas. PD-L1 prevalence estimates vary widely in bladder cancer, and lack of correlation between expression and clinical outcomes and immunotherapyresponse may be attributed to methodological differences of the immunohistochemical reagents and procedures. We characterized PD-L1 expression in 235 urothelial carcinomas including 79 matched pairs of primary and metastatic cancers using a panel of four PD-L1 immunoassays in comparison with RNAscope assay using PD-L1-specific probe (CD274). The antibody panel included three FDA-approved clones (22C3 for pembrolizumab, 28.8 for nivolumab, SP142 for atezolizumab), and a commonly used clone E1L3N. Manual scoring of tissue microarrays was performed in each of 235 tumors (624 tissue cores) and compared to an automated image analysis. Expression of PD-L1 in tumor cells by ≥1 marker was detected in 41/142 (28.9%) primary tumors, 13/77 (16.9%) lymph nodes, and 2/16 (12.5%) distant metastases. In positive cases, high PD-L1 expression (>50% cells) was detected in 34.1% primary and 46.7% metastases. Concordant PD-L1 expression status was present in 71/79 (89.9%) cases of matched primary and metastatic urothelial carcinomas. PD-L1 sensitivity ranked from highest to lowest as follows: RNAscope, clone 28.8, 22C3, E1L3N, and SP142. Pairwise concordance correlation coefficients between the four antibodies in 624 tissue cores ranged from 0.76 to 0.9 for tumor cells and from 0.30 to 0.85 for immune cells. RNA and protein expression levels showed moderate to high agreement (0.72-0.87). Intra-tumor expression heterogeneity was low for both protein and RNA assays (interclass correlation coefficients: 0.86-0.94). Manual scores were highly concordant with automated Aperio scores (0.94-0.97). A significant subset of 56/235 (23.8%) urothelial carcinomas stained positive for PD-L1 with high concordance between all four antibodies and RNA ISH assay. Despite some heterogeneity in staining, the overall results are highly concordant suggesting diagnostic equivalence of tested assays.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com