ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Arthritis research & therapy
2023 May 02
Johnsson, H;Cole, J;Siebert, S;McInnes, IB;Graham, G;
PMID: 37131254 | DOI: 10.1186/s13075-023-03034-6
Kidney International
2018 Feb 01
Bideak A, Blaut A, Hoppe JM, Müller MB, Federico G, Eltrich N, Gröne HJ, Locati M, Vielhauer V.
PMID: - | DOI: 10.1016/j.kint.2017.11.013
The atypical chemokine receptor 2 (ACKR2), also named D6, regulates local levels of inflammatory chemokines by internalization and degradation. To explore potential anti-inflammatory functions of ACKR2 in glomerulonephritis, we induced autologous nephrotoxic nephritis in C57/BL6 wild-type and Ackr2-deficient mice. Renal ACKR2 expression increased and localized to interstitial lymphatic endothelium during nephritis. At two weeks Ackr2–/–mice developed increased albuminuria and urea levels compared to wild-type mice. Histological analysis revealed increased structural damage in the glomerular and tubulointerstitial compartments within Ackr2−/− kidneys. This correlated with excessive renal leukocyte infiltration of CD4+ T cells and mononuclear phagocytes with increased numbers in the tubulointerstitium but not glomeruli in knockout mice. Expression of inflammatory mediators and especially markers of fibrotic tissue remodeling were increased along with higher levels of ACKR2 inflammatory chemokine ligands like CCL2 in nephritic Ackr2–/– kidneys. In vitro, Ackr2 deficiency in TNF-stimulated tubulointerstitial tissue but not glomeruli increased chemokine levels. These results are in line with ACKR2 expression in interstitial lymphatic endothelial cells, which also assures efflux of activated leukocytes into regional lymph nodes. Consistently, nephritic Ackr2–/– mice showed reduced adaptive cellular immune responses indicated by decreased regional T-cell activation. However, this did not prevent aggravated injury in the kidneys of Ackr2–/– mice with nephrotoxic nephritis due to simultaneously increased tubulointerstitial chemokine levels, leukocyte infiltration and fibrosis. Thus, ACKR2 is important in limiting renal inflammation and fibrotic remodeling in progressive nephrotoxic nephritis. Hence, ACKR2 may be a potential target for therapeutic interventions in immune complex glomerulonephritis.
Am J Pathol.
2018 Nov 16
Lux M, Blaut A, Eltrich N, Bideak A, Müller MB, Hoppe JM, Gröne HJ, Locati M, Vielhauer V.
PMID: 30448408 | DOI: 10.1016/j.ajpath.2018.09.016
Following renal ischemia-reperfusion injury (IRI) resolution of inflammation allows tubular regeneration, whereas ongoing inflammatory injury mediated by infiltrating leukocytes leads to nephron loss and renal fibrosis, typical hallmarks of chronic kidney disease. The atypical chemokine receptor 2 (ACKR2) is a chemokine decoy receptor, that binds and scavenges inflammatory CC-chemokines and reduces local leukocyte accumulation. We hypothesized that ACKR2 limits leukocyte infiltration, inflammation, and fibrotic tissue remodeling after renal IRI, thus preventing progression to chronic kidney disease. Compared to wild-type, Ackr2 deficiency increased CC chemokine ligand 2 levels in tumor necrosis factor-stimulated tubulointerstitial tissue in vitro. In Ackr2-deficient mice with early IRI one or five days after transient renal pedicle clamping tubular injury was similar to wild-type, although accumulation of mononuclear phagocytes increased in postischemic Ackr2-/-kidneys. Regarding long-term outcomes, Ackr2-/- kidneys displayed more tubular injury five weeks after IRI, which was associated with persistently increased renal infiltrates of mononuclear phagocytes, T cells, Ly6Chigh inflammatory macrophages, and inflammation. Moreover, Ackr2 deficiency resulted in substantially aggravated renal fibrosis in Ackr2-/- kidneys five weeks after IRI, as revealed by increased expression of matrix molecules, renal accumulation of αSMA+ myofibroblasts, and bone marrow-derived fibrocytes. ACKR2 plays an important role in limiting persistent inflammation, tubular loss, and renal fibrosis after ischemic acute kidney injury, and thus can prevent progression to chronic renal disease.
Eur J Immunol
2020 Feb 29
Hansell CAH, Love S, Pingen M, Wilson GJ, MacLeod M, Graham GJ
PMID: 32114694 | DOI: 10.1002/eji.201948374
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com