ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Brain Sci
2020 Apr 10
Losurdo M, Davidsson J, Sk�ld MK
PMID: 32290212 | DOI: 10.3390/brainsci10040229
Nature
2022 Jul 01
Garcia-Alonso, L;Lorenzi, V;Mazzeo, CI;Alves-Lopes, JP;Roberts, K;Sancho-Serra, C;Engelbert, J;Marečková, M;Gruhn, WH;Botting, RA;Li, T;Crespo, B;van Dongen, S;Kiselev, VY;Prigmore, E;Herbert, M;Moffett, A;Chédotal, A;Bayraktar, OA;Surani, A;Haniffa, M;Vento-Tormo, R;
PMID: 35794482 | DOI: 10.1038/s41586-022-04918-4
Sci Transl Med.
2018 Aug 15
Bird TG, Müller M, Boulter L, Vincent DF, Ridgway RA, Lopez-Guadamillas E, Lu WY, Jamieson T, Govaere O, Campbell AD, Ferreira-Gonzalez S, Cole AM, Hay T, Simpson KJ, Clark W, Hedley A, Clarke M, Gentaz P, Nixon C, Bryce S, Kiourtis C, Sprangers J, Nibbs
PMID: 30111642 | DOI: 10.1126/scitranslmed.aan1230
Liver injury results in rapid regeneration through hepatocyte proliferation and hypertrophy. However, after acute severe injury, such as acetaminophen poisoning, effective regeneration may fail. We investigated how senescence may underlie this regenerative failure. In human acute liver disease, and murine models, p21-dependent hepatocellular senescence was proportionate to disease severity and was associated with impaired regeneration. In an acetaminophen injury mouse model, a transcriptional signature associated with the induction of paracrine senescence was observed within 24 hours and was followed by one of impaired proliferation. In mouse genetic models of hepatocyte injury and senescence, we observed transmission of senescence to local uninjured hepatocytes. Spread of senescence depended on macrophage-derived transforming growth factor-β1 (TGFβ1) ligand. In acetaminophen poisoning, inhibition of TGFβ receptor 1 (TGFβR1) improved mouse survival. TGFβR1 inhibition reduced senescence and enhanced liver regeneration even when delivered beyond the therapeutic window for treating acetaminophen poisoning. This mechanism, in which injury-induced senescence impairs liver regeneration, is an attractive therapeutic target for developing treatments for acute liver failure.
Science.
2018 Apr 20
Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE, Mathewson ND, Neftel C, Frank N, Pelton K, Hebert CM, Haberler C, Yizhak K, Gojo J, Egervari K, Mount C, van Galen P, Bonal DM, Nguyen QD, Beck A, Sinai C, Czech T, Dorfer C, Goumnerova L, Lavarino
PMID: 29674595 | DOI: 10.1126/science.aao4750
Gliomas with histone H3 lysine27-to-methionine mutations (H3K27M-glioma) arise primarily in the midline of the central nervous system of young children, suggesting a cooperation between genetics and cellular context in tumorigenesis. Although the genetics of H3K27M-glioma are well characterized, their cellular architecture remains uncharted. We performed single-cell RNA sequencing in 3321 cells from six primary H3K27M-glioma and matched models. We found that H3K27M-glioma primarily contain cells that resemble oligodendrocyte precursor cells (OPC-like), whereas more differentiated malignant cells are a minority. OPC-like cells exhibit greater proliferation and tumor-propagating potential than their more differentiated counterparts and are at least in part sustained by PDGFRA signaling. Our study characterizes oncogenic and developmental programs in H3K27M-glioma at single-cell resolution and across genetic subclones, suggesting potential therapeutic targets in this disease.
Cell Rep. 2018 Dec 18;25(12):3435-3450.e6.
2018 Dec 18
Wang J, Saraswat D, Sinha AK, Polanco J, Dietz K, O'Bara MA, Pol SU, Shayya HJ, Sim FJ.
PMID: 30566868 | DOI: 10.1016/j.celrep.2018.11.068
JCI insight
2023 Jan 10
Dada, LA;Welch, LC;Magnani, ND;Ren, Z;Han, H;Brazee, PL;Celli, D;Flozak, AS;Weng, A;Herrerias, MM;Kryvenko, V;Vadász, I;Runyan, CE;Abdala-Valencia, H;Shigemura, M;Casalino-Matsuda, SM;Misharin, AV;Budinger, GRS;Gottardi, CJ;Sznajder, JI;
PMID: 36626234 | DOI: 10.1172/jci.insight.159331
Cell stem cell
2022 Nov 03
Su, Y;Zhou, Y;Bennett, ML;Li, S;Carceles-Cordon, M;Lu, L;Huh, S;Jimenez-Cyrus, D;Kennedy, BC;Kessler, SK;Viaene, AN;Helbig, I;Gu, X;Kleinman, JE;Hyde, TM;Weinberger, DR;Nauen, DW;Song, H;Ming, GL;
PMID: 36332572 | DOI: 10.1016/j.stem.2022.09.010
Science immunology
2022 Apr 01
Hoch, T;Schulz, D;Eling, N;Gómez, JM;Levesque, MP;Bodenmiller, B;
PMID: 35363540 | DOI: 10.1126/sciimmunol.abk1692
Pathology international
2022 Jan 12
Ichihara, R;Shiraki, Y;Mizutani, Y;Iida, T;Miyai, Y;Esaki, N;Kato, A;Mii, S;Ando, R;Hayashi, M;Takami, H;Fujii, T;Takahashi, M;Enomoto, A;
PMID: 35020975 | DOI: 10.1111/pin.13198
Cell
2018 Aug 30
Di Liberto G, Pantelyushin S, Kreutzfeldt M, Page N, Musardo S, Coras R, Steinbach K, Vincenti I, Klimek B, Lingner T, Salinas G, Lin-Marq N, Staszewski O, Costa Jordão MJ, Wagner I, Egervari K, Mack M, Bellone C, Blümcke I, Prinz M, Pinschewer DD, Merkle
PMID: - | DOI: 10.1016/j.cell.2018.07.049
Inflammatory disorders of the CNS are frequently accompanied by synaptic loss, which is thought to involve phagocytic microglia and complement components. However, the mechanisms accounting for aberrant synaptic connectivity in the context of CD8+ T cell-driven neuronal damage are poorly understood. Here, we profiled the neuronal translatome in a murine model of encephalitis caused by CD8+ T cells targeting antigenic neurons. Neuronal STAT1 signaling and downstream CCL2 expression were essential for apposition of phagocytes, ensuing synaptic loss and neurological disease. Analogous observations were made in the brains of Rasmussen’s encephalitis patients. In this devastating CD8+T cell-driven autoimmune disease, neuronal STAT1 phosphorylation and CCL2 expression co-clustered with infiltrating CD8+ T cells as well as phagocytes. Taken together, our findings uncover an active role of neurons in coordinating phagocyte-mediated synaptic loss and highlight neuronal STAT1 and CCL2 as critical steps in this process that are amenable to pharmacological interventions.
Neuron
2018 Sep 27
Duan L, Zhang XD, Miao WX, Sun YJ, Xiong G, Wu Q, Li G, Yang P, Yu H, Li H, Wang Y, Zhang M, Hu LY, Tong X, Zhou WH, Yu X.
PMID: - | DOI: 10.1016/j.neuron.2018.08.030
Acute infection, if not kept in check, can lead to systemic inflammatory responses in the brain. Here, we show that within 2 hr of systemic inflammation, PDGFRβ mural cells of blood vessels rapidly secrete chemokine CCL2, which in turn increases total neuronal excitabilityby promoting excitatory synaptic transmission in glutamatergic neurons of multiple brain regions. By single-cell RNA sequencing, we identified Col1a1 and Rgs5 subgroups of PDGFRβ cells as the main source of CCL2. Lipopolysaccharide (LPS)- or Poly(I:C)-treated pericyte culture medium induced similar effects in a CCL2-dependent manner. Importantly, in Pdgfrb-Cre;Ccl2fl/fl mice, LPS-induced increase in excitatory synaptic transmission was significantly attenuated. These results demonstrate in vivo that PDGFRβ cells function as initial sensors of external insults by secreting CCL2, which relays the signal to the central nervous system. Through their gateway position in the brain, PDGFRβ cells are ideally positioned to respond rapidly to environmental changes and to coordinate responses.
Developmental cell
2022 May 02
van Bruggen, D;Pohl, F;Langseth, CM;Kukanja, P;Lee, H;Albiach, AM;Kabbe, M;Meijer, M;Linnarsson, S;Hilscher, MM;Nilsson, M;Sundström, E;Castelo-Branco, G;
PMID: 35523173 | DOI: 10.1016/j.devcel.2022.04.016
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com