Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (65)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • (-) Remove Pomc filter Pomc (34)
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • (-) Remove Rbfox3 filter Rbfox3 (25)
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (25) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (17) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent v2 (4) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope (3) Apply RNAscope filter
  • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter

Research area

  • Neuroscience (48) Apply Neuroscience filter
  • Development (6) Apply Development filter
  • Inflammation (5) Apply Inflammation filter
  • Metabolism (5) Apply Metabolism filter
  • Obesity (3) Apply Obesity filter
  • Covid (2) Apply Covid filter
  • Other: Metabolism (2) Apply Other: Metabolism filter
  • Addiction (1) Apply Addiction filter
  • Allergy (1) Apply Allergy filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Autism spectrum disorder (1) Apply Autism spectrum disorder filter
  • behavioral (1) Apply behavioral filter
  • Brain Malformations (1) Apply Brain Malformations filter
  • Cancer (1) Apply Cancer filter
  • Chronic Itch (1) Apply Chronic Itch filter
  • CRISPR (1) Apply CRISPR filter
  • diabetes (1) Apply diabetes filter
  • Endocrinology (1) Apply Endocrinology filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • Kidney Fibrosis (1) Apply Kidney Fibrosis filter
  • Nephrology (1) Apply Nephrology filter
  • Neuro development (1) Apply Neuro development filter
  • Neurosceince (1) Apply Neurosceince filter
  • Nueroscience (1) Apply Nueroscience filter
  • Other (1) Apply Other filter
  • Other: Opioid Tolerance (1) Apply Other: Opioid Tolerance filter
  • Progressive Supranuclear Palsy (1) Apply Progressive Supranuclear Palsy filter
  • Stem cell (1) Apply Stem cell filter
  • Weight Loss (1) Apply Weight Loss filter

Category

  • Publications (65) Apply Publications filter
Expression of Rasd1 in mouse endocrine pituitary cells and its response to dexamethasone

Stress (Amsterdam, Netherlands)

2021 Apr 10

Foradori, CD;Mackay, L;Huang, CJ;Kemppainen, RJ;
PMID: 33840368 | DOI: 10.1080/10253890.2021.1907340

Dexamethasone-induced Ras-related protein 1 (Rasd1) is a member of the Ras superfamily of monomeric G proteins that have a regulatory function in signal transduction. Rasd1, also known as Dexras1 or AGS1, is rapidly induced by dexamethasone (Dex). While prior data indicates that Rasd1 is highly expressed in the pituitary and that the gene may function in regulation of corticotroph activity, its exact cellular localization in this tissue has not been delineated. Nor has it been determined which endocrine pituitary cell type(s) are responsive to Dex-induced expression of Rasd1. We hypothesized that Rasd1 is primarily localized in corticotrophs and furthermore, that its expression in these cells would be upregulated in response to exogenous Dex administration. Rasd1 expression in each pituitary cell type both under basal conditions and 1-hour post Dex treatment were examined in adult male mice. While a proportion of all endocrine pituitary cell types expressed Rasd1, a majority of corticotrophs and thyrotrophs expressed Rasd1 under basal condition. In vehicle treated animals, approximately 50-60% of corticotrophs and thyrotrophs cells expressed Rasd1 while the gene was detected in only 15-30% of lactotrophs, somatotrophs, and gonadotrophs. In Dex treated animals, Rasd1 expression was significantly increased in corticotrophs, somatotrophs, lactotrophs, and gonadotrophs but not thyrotrophs. In Dex treated animals, Rasd1 was detected in 80-95% of gonadotrophs and corticotrophs. In contrast, Dex treatment increased Rasd1 expression to a lesser extent (55-60%) in somatotrophs and lactotrophs. Corticotrophs of the pars intermedia, which lack glucocorticoid receptors, failed to display increased Rasd1 expression in Dex treated animals. Rasd1 is highly expressed in corticotrophs under basal conditions and is further increased after Dex treatment, further supporting its role in glucocorticoid negative feedback. In addition, the presence and Dex-induced expression of Rasd1 in endocrine pituitary cell types, other than corticotrophs, may implicate Rasd1 in novel pituitary functions.
Hypothalamic POMC or MC4R deficiency impairs counterregulatory responses to hypoglycemia in mice.

Molecular Metabolism

2018 Nov 20

Tooke BP, Yu H, Adams JM, Jones GL, Sutton-Kennedy T, Mundada L, Qi NR, Low MJ, Chhabra KH.
PMID: - | DOI: 10.1016/j.molmet.2018.11.004

Abstract

Objective

Life-threatening hypoglycemia is a major limiting factor in the management of diabetes. While it is known that counterregulatory responses to hypoglycemia are impaired in diabetes, molecular mechanisms underlying the reduced responses remain unclear. Given the established roles of the hypothalamic proopiomelanocortin (POMC)/melanocortin 4 receptor (MC4R) circuit in regulating sympathetic nervous system (SNS) activity and the SNS in stimulating counterregulatory responses to hypoglycemia, we hypothesized that hypothalamic POMC as well as MC4R, a receptor for POMC derived melanocyte stimulating hormones, is required for normal hypoglycemia counterregulation.

Methods

To test the hypothesis, we induced hypoglycemia or glucopenia in separate cohorts of mice deficient in either POMC or MC4R in the arcuate nucleus (ARC) or the paraventricular nucleus of the hypothalamus (PVH), respectively, and measured their circulating counterregulatory hormones. In addition, we performed a hyperinsulinemic-hypoglycemic clamp study to further validate the function of MC4R in hypoglycemia counterregulation. We also measured Pomc and Mc4r mRNA levels in the ARC and PVH, respectively, in the streptozotocin-induced type 1 diabetes mouse model and non-obese diabetic (NOD) mice to delineate molecular mechanisms by which diabetes deteriorates the defense systems against hypoglycemia. Finally, we treated diabetic mice with the MC4R agonist MTII, administered stereotaxically into the PVH, to determine its potential for restoring the counterregulatory response to hypoglycemia in diabetes.

Results

Stimulation of epinephrine and glucagon release in response to hypoglycemia or glucopenia was diminished in both POMC- and MC4R-deficient mice, relative to their littermate controls. Similarly, the counterregulatory response was impaired in association with decreased hypothalamic Pomc and Mc4r expression in the diabetic mice, a phenotype that was not reversed by insulin treatment which normalized glycemia. In contrast, infusion of an MC4R agonist in the PVH restored the counterregulatory response in diabetic mice.

Conclusion

In conclusion, hypothalamic Pomc as well as Mc4r, both of which are reduced in type 1 diabetic mice, are required for normal counterregulatory responses to hypoglycemia. Therefore, enhancing MC4R function may improve hypoglycemia counterregulation in diabetes.

Renewal of oligodendrocyte lineage reverses dysmyelination and CNS neurodegeneration through corrected N-acetylaspartate metabolism

Progress in neurobiology

2023 May 04

Lotun, A;Li, D;Xu, H;Su, Q;Tuncer, S;Sanmiguel, J;Mooney, M;Baer, CE;Ulbrich, R;Eyles, SJ;Strittmatter, L;Hayward, LJ;Gessler, DJ;Gao, G;
PMID: 37149081 | DOI: 10.1016/j.pneurobio.2023.102460

Myelinating oligodendrocytes are essential for neuronal communication and homeostasis of the central nervous system (CNS). One of the most abundant molecules in the mammalian CNS is N-acetylaspartate (NAA), which is catabolized into L-aspartate and acetate by the enzyme aspartoacylase (ASPA) in oligodendrocytes. The resulting acetate moiety is thought to contribute to myelin lipid synthesis. In addition, affected NAA metabolism has been implicated in several neurological disorders, including leukodystrophies and demyelinating diseases such as multiple sclerosis. Genetic disruption of ASPA function causes Canavan disease, which is hallmarked by increased NAA levels, myelin and neuronal loss, large vacuole formation in the CNS, and early death in childhood. Although NAA's direct role in the CNS is inconclusive, in peripheral adipose tissue, NAA-derived acetate has been found to modify histones, a mechanism known to be involved in epigenetic regulation of cell differentiation. We hypothesize that a lack of cellular differentiation in the brain contributes to the disruption of myelination and neurodegeneration in diseases with altered NAA metabolism, such as Canavan disease. Our study demonstrates that loss of functional Aspa in mice disrupts myelination and shifts the transcriptional expression of neuronal and oligodendrocyte markers towards less differentiated stages in a spatiotemporal manner. Upon re-expression of ASPA, these oligodendrocyte and neuronal lineage markers are either improved or normalized, suggesting that NAA breakdown by Aspa plays an essential role in the maturation of neurons and oligodendrocytes. Also, this effect of ASPA re-expression is blunted in old mice, potentially due to limited ability of neuronal, rather than oligodendrocyte, recovery.
Antisense-mediated reduction of EphA4 in the adult CNS does not improve the function of mice with amyotrophic lateral sclerosis

Neurobiol Dis.

2018 Mar 06

Ling KK, Jackson M, Alkam D, Liu D, Allaire N, Sun C, Kiaei M, McCampbell A, Rigo F.
PMID: 29518482 | DOI: 10.1016/j.nbd.2018.03.002

Amyotrophic lateral sclerosis (ALS) is a fatal adult onset motor neuron disease characterized by progressive denervation and subsequent motor impairment. EphA4, a negative regulator of axonal growth, was recently identified as a genetic modifier in fish and rodent models of ALS. To evaluate the therapeutic potential of EphA4 for ALS, we examined the effect of CNS-directed EphA4 reduction in preclinical mouse models of ALS, and assessed if the levels of EPHA4 mRNA in blood correlate with disease onset and progression in human ALS patients. We developed antisense oligonucleotides (ASOs) to specifically reduce the expression of EphA4 in the central nervous system (CNS) of adult mice. Intracerebroventricular administration of an Epha4-ASO in wild-type mice inhibited Epha4 mRNA and protein in the brain and spinal cord, and promoted re-innervation and functional recovery after sciatic nerve crush. In contrast, lowering of EphA4 in the CNS of two mouse models of ALS (SOD1G93A and PFN1G118V) did not improve their motor function or survival. Furthermore, the level of EPHA4 mRNA in human blood correlated weakly with age of disease onset, and it was not a significant predictor of disease progression as measured by ALS Functional Rating Scores (ALSFRS). Our data demonstrates that lowering EphA4 in the adult CNS may not be a stand-alone viable strategy for treating ALS.

Novel Human Insulin Isoforms and Cα-peptide Product in Islets of Langerhans and Choroid Plexus

Diabetes

2021 Oct 14

Liu, QR;Zhu, M;Zhang, P;Mazucanti, CH;Huang, NS;Lang, DL;Chen, Q;Auluck, P;Marenco, S;O'Connell, JF;Ferrucci, L;Chia, CW;Egan, JM;
PMID: 34649926 | DOI: 10.2337/db21-0198

Human insulin (INS) gene diverged from the ancestral genes of invertebrate and mammalian species millions of years ago. We previously found that mouse insulin gene (Ins2) isoforms are expressed in brain choroid plexus (ChP) epithelium cells where insulin secretion is regulated by serotonin and not by glucose. We further compared human INS isoform expression in postmortem ChP and islets of Langerhans. We uncovered novel INS upstream open reading frame (uORF) isoforms and their protein products. In addition, we found a novel alternatively spliced isoform that translates to a 74-amino acid (AA) proinsulin containing a shorter 19-AA C-peptide sequence, herein designated Cα-peptide. The middle portion of the conventional C-peptide contains β-sheet (GQVEL) and hairpin (GGGPG) motifs that are not present in Cα-peptide. Islet amyloid polypeptide (IAPP) is not expressed in ChP and its amyloid formation was inhibited in vitro by Cα-peptide more efficiently than by C-peptide. Of clinical relevance, the ratio of the 74-AA proinsulin to proconvertase processed Cα-peptide was significantly increased in islets from type 2 diabetes mellitus (T2DM) autopsy donors. Intriguingly, 100 years after the discovery of insulin we found that INS isoforms are present in ChP from insulin-deficient autopsy donors.
Adult-induced genetic ablation distinguishes PDGFB roles in blood-brain barrier maintenance and development

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

2021 Oct 25

Vazquez-Liebanas, E;Nahar, K;Bertuzzi, G;Keller, A;Betsholtz, C;Mäe, MA;
PMID: 34689641 | DOI: 10.1177/0271678X211056395

Platelet-derived growth factor B (PDGFB) released from endothelial cells is indispensable for pericyte recruitment during angiogenesis in embryonic and postnatal organ growth. Constitutive genetic loss-of-function of PDGFB leads to pericyte hypoplasia and the formation of a sparse, dilated and venous-shifted brain microvasculature with dysfunctional blood-brain barrier (BBB) in mice, as well as the formation of microvascular calcification in both mice and humans. Endothelial PDGFB is also expressed in the adult quiescent microvasculature, but here its importance is unknown. We show that deletion of Pdgfb in endothelial cells in 2-months-old mice causes a slowly progressing pericyte loss leading, at 12-18 months of age, to ≈50% decrease in endothelial:pericyte cell ratio, ≈60% decrease in pericyte longitudinal capillary coverage and >70% decrease in pericyte marker expression. Similar to constitutive loss of Pdgfb, this correlates with increased BBB permeability. However, in contrast to the constitutive loss of Pdgfb, adult-induced loss does not lead to vessel dilation, impaired arterio-venous zonation or the formation of microvascular calcifications. We conclude that PDFGB expression in quiescent adult microvascular brain endothelium is critical for the maintenance of pericyte coverage and normal BBB function, but that microvessel dilation, rarefaction, arterio-venous skewing and calcification reflect developmental roles of PDGFB.
Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis

Cell metabolism

2021 Jul 27

Gómez-Valadés, AG;Pozo, M;Varela, L;Boudjadja, MB;Ramírez, S;Chivite, I;Eyre, E;Haddad-Tóvolli, R;Obri, A;Milà-Guasch, M;Altirriba, J;Schneeberger, M;Imbernón, M;Garcia-Rendueles, AR;Gama-Perez, P;Rojo-Ruiz, J;Rácz, B;Alonso, MT;Gomis, R;Zorzano, A;D'Agostino, G;Alvarez, CV;Nogueiras, R;Garcia-Roves, PM;Horvath, TL;Claret, M;
PMID: 34343501 | DOI: 10.1016/j.cmet.2021.07.008

Appropriate cristae remodeling is a determinant of mitochondrial function and bioenergetics and thus represents a crucial process for cellular metabolic adaptations. Here, we show that mitochondrial cristae architecture and expression of the master cristae-remodeling protein OPA1 in proopiomelanocortin (POMC) neurons, which are key metabolic sensors implicated in energy balance control, is affected by fluctuations in nutrient availability. Genetic inactivation of OPA1 in POMC neurons causes dramatic alterations in cristae topology, mitochondrial Ca2+ handling, reduction in alpha-melanocyte stimulating hormone (α-MSH) in target areas, hyperphagia, and attenuated white adipose tissue (WAT) lipolysis resulting in obesity. Pharmacological blockade of mitochondrial Ca2+ influx restores α-MSH and the lipolytic program, while improving the metabolic defects of mutant mice. Chemogenetic manipulation of POMC neurons confirms a role in lipolysis control. Our results unveil a novel axis that connects OPA1 in POMC neurons with mitochondrial cristae, Ca2+ homeostasis, and WAT lipolysis in the regulation of energy balance.
Defining potential targets of prenatal androgen excess: expression analysis of androgen receptor on hypothalamic neurons in the fetal female mouse brain

Journal of Neuroendocrinology

2023 May 18

Watanabe, Y;Fisher, L;Campbell, R;Jasoni, C;
| DOI: 10.1111/jne.13302

Polycystic ovary syndrome (PCOS) is a female endocrine disorder that is associated with prenatal exposure to excess androgens. In prenatally androgenized (PNA) mice that model PCOS, GABAergic neural transmission to and innervation of GnRH neurons is increased. Evidence suggests that elevated GABAergic innervation originates in the arcuate nucleus (ARC). We hypothesised that GABA-GnRH circuit abnormalities are a direct consequence of PNA, resulting from DHT binding to androgen receptor (AR) in the prenatal brain. However, whether prenatal ARC neurons express AR at the time of PNA treatment is presently unknown. We used RNAScope _in situ_ hybridization to localize AR mRNA (_Ar_)-expressing cells in healthy gestational day (GD) 17.5 female mouse brains and to assess co-expression levels in specific neuronal phenotypes. Our study revealed that less than 10% of ARC GABA cells expressed _Ar_. In contrast, we found that ARC kisspeptin neurons, critical regulators of GnRH neurons, were highly co-localised with _Ar_. Approximately 75% of ARC _Kiss1_-expressing cells also expressed _Ar_ at GD17.5, suggesting that ARC kisspeptin neurons are potential targets of PNA. Investigating other neuronal populations in the ARC we found that approximately 50% of pro-opiomelanocortin (_Pomc_) cells, 22% of tyrosine hydroxylase (_Th_) cells, 8% of agouti-related protein (_Agrp_) cells and 8% of somatostatin (_Sst_) cells express _Ar_. Lastly, RNAscope in coronal sections showed _Ar_ expression in the medial preoptic area (mPOA), and the ventral part of the lateral septum (vLS). These _Ar_-expressing regions were highly GABAergic, and 22% of GABA cells in the mPOA and 25% of GABA cells in the vLS also expressed _Ar_. Our findings identify specific neuronal phenotypes in the ARC, mPOA and vLS that are androgen sensitive in late gestation. PNA-induced functional changes in these neurons may be related to the development of impaired central mechanisms associated with PCOS-like features.
Platelet-derived growth factor signalling in neurovascular function and disease

The international journal of biochemistry & cell biology

2022 Feb 22

Li, SY;Johnson, R;Smyth, LC;Dragunow, M;
PMID: 35217189 | DOI: 10.1016/j.biocel.2022.106187

Platelet-derived growth factors are critical for cerebrovascular development and homeostasis. Abnormalities in this signalling pathway are implicated in neurological diseases, especially those where neurovascular dysfunction and neuroinflammation plays a prominent role in disease pathologies, such as stroke and Alzheimer's disease; the angiogenic nature of this pathway also draws its significance in brain malignancies such as glioblastoma where tumour angiogenesis is profuse. In this review, we provide an updated overview of the actions of the platelet-derived growth factors on neurovascular function, their role in the regulation of perivascular cell types expressing the cognate receptors, neurological diseases associated with aberrance in signalling, and highlight the clinical relevance and therapeutic potentials of this pathway for central nervous system diseases.
Cell-specific MAPT gene expression is preserved in neuronal and glial tau cytopathologies in progressive supranuclear palsy

Acta neuropathologica

2023 Jun 24

Forrest, SL;Lee, S;Nassir, N;Martinez-Valbuena, I;Sackmann, V;Li, J;Ahmed, A;Tartaglia, MC;Ittner, LM;Lang, AE;Uddin, M;Kovacs, GG;
PMID: 37354322 | DOI: 10.1007/s00401-023-02604-x

Microtubule-associated protein tau (MAPT) aggregates in neurons, astrocytes and oligodendrocytes in a number of neurodegenerative diseases, including progressive supranuclear palsy (PSP). Tau is a target of therapy and the strategy includes either the elimination of pathological tau aggregates or reducing MAPT expression, and thus the amount of tau protein made to prevent its aggregation. Disease-associated tau affects brain regions in a sequential manner that includes cell-to-cell spreading. Involvement of glial cells that show tau aggregates is interpreted as glial cells taking up misfolded tau assuming that glial cells do not express enough MAPT. Although studies have evaluated MAPT expression in human brain tissue homogenates, it is not clear whether MAPT expression is compromised in cells accumulating pathological tau. To address these perplexing aspects of disease pathogenesis, this study used RNAscope combined with immunofluorescence (AT8), and single-nuclear(sn) RNAseq to systematically map and quantify MAPT expression dynamics across different cell types and brain regions in controls (n = 3) and evaluated whether tau cytopathology affects MAPT expression in PSP (n = 3). MAPT transcripts were detected in neurons, astrocytes and oligodendrocytes, and varied between brain regions and within each cell type, and were preserved in all cell types with tau aggregates in PSP. These results propose a complex scenario in all cell types, where, in addition to the ingested misfolded tau, the preserved cellular MAPT expression provides a pool for local protein production that can (1) be phosphorylated and aggregated, or (2) feed the seeding of ingested misfolded tau by providing physiological tau, both accentuating the pathological process. Since tau cytopathology does not compromise MAPT gene expression in PSP, a complete loss of tau protein expression as an early pathogenic component is less likely. These observations provide rationale for a dual approach to therapy by decreasing cellular MAPT expression and targeting removal of misfolded tau.
Lipopolysacharide rapidly and completely suppresses AgRP neuron-mediated food intake in male mice

Endocrinology.

2016 Apr 25

Liu Y, Huang Y, Liu T, Wu H, Cui H, Gautron L.
PMID: 27111742 | DOI: -

While Agouti-related peptide (AgRP) neurons play a key role in the regulation of food intake, their contribution to the anorexia caused by pro-inflammatory insults has yet to be identified. Using a combination of neuroanatomical and pharmacogenetics experiments, this study sought to investigate the importance of AgRP neurons and downstream targets in the anorexia caused by the peripheral administration of a moderate dose of lipopolysaccharide (LPS; 100 μ g/kg, ip). First, in the C57/Bl6 mouse, we demonstrated that LPS induced c-fos in select AgRP-innervated brain sites involved in feeding, but not in any arcuate proopiomelanocortin neurons. Double immunohistochemistry further showed that LPS selectively induced c-Fos in a large subset of melanocortin 4 receptor-expressing neurons in the lateral parabrachial nucleus. Secondly, we used pharmacogenetics to stimulate the activity of AgRP neurons during the course of LPS-induced anorexia. In AgRP-Cre mice expressing the designer receptor hM3Dq-Gq only in AgRP neurons, the administration of the designer drug clozapine-N-oxide (CNO) induced robust food intake. Strikingly, CNO-mediated food intake was rapidly and completely blunted by the coadministration of LPS. Neuroanatomical experiments further indicated that LPS did not interfere with the ability of CNO to stimulate c-Fos in AgRP neurons. In summary, our findings combined together support the view that the stimulation of select AgRP-innervated brain sites and target neurons, rather than the inhibition of AgRP neurons themselves, is likely to contribute to the rapid suppression of food intake observed during acute bacterial endotoxemia.

SARS-CoV-2 airway infection results in the development of somatosensory abnormalities in a hamster model

Science signaling

2023 May 09

Serafini, RA;Frere, JJ;Zimering, J;Giosan, IM;Pryce, KD;Golynker, I;Panis, M;Ruiz, A;tenOever, BR;Zachariou, V;
PMID: 37159520 | DOI: 10.1126/scisignal.ade4984

Although largely confined to the airways, SARS-CoV-2 infection has been associated with sensory abnormalities that manifest in both acute and chronic phenotypes. To gain insight on the molecular basis of these sensory abnormalities, we used the golden hamster model to characterize and compare the effects of infection with SARS-CoV-2 and influenza A virus (IAV) on the sensory nervous system. We detected SARS-CoV-2 transcripts but no infectious material in the cervical and thoracic spinal cord and dorsal root ganglia (DRGs) within the first 24 hours of intranasal virus infection. SARS-CoV-2-infected hamsters exhibited mechanical hypersensitivity that was milder but prolonged compared with that observed in IAV-infected hamsters. RNA sequencing analysis of thoracic DRGs 1 to 4 days after infection suggested perturbations in predominantly neuronal signaling in SARS-CoV-2-infected animals as opposed to type I interferon signaling in IAV-infected animals. Later, 31 days after infection, a neuropathic transcriptome emerged in thoracic DRGs from SARS-CoV-2-infected animals, which coincided with SARS-CoV-2-specific mechanical hypersensitivity. These data revealed potential targets for pain management, including the RNA binding protein ILF3, which was validated in murine pain models. This work elucidates transcriptomic signatures in the DRGs triggered by SARS-CoV-2 that may underlie both short- and long-term sensory abnormalities.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?