Ogawa-Wong, A;Carmody, C;Le, K;Marschner, RA;Larsen, PR;Zavacki, AM;Wajner, SM;
PMID: 35888735 | DOI: 10.3390/metabo12070612
The muscle stem-cell niche comprises numerous cell types, which coordinate the regeneration process after injury. Thyroid hormones are one of the main factors that regulate genes linked to skeletal muscle. In this way, deiodinase types 2 and 3 are responsible for the fine-tuning regulation of the local T3 amount. Although their expression and activity have already been identified during muscle regeneration, it is of utmost importance to identify the cell type and temporal pattern of expression after injury to thoroughly comprehend their therapeutic potential. Here, we confirmed the expression of Dio2 and Dio3 in the whole tibialis anterior muscle. We identified, on a single-cell basis, that Dio2 is present in paired box 7 (PAX7)-positive cells starting from day 5 after injury. Dio2 is present in platelet derived growth factor subunit A (PDGFA)-expressing fibro-adipogenic progenitor cells between days 7 and 14 after injury. Dio3 is detected in myogenic differentiation (MYOD)-positive stem cells and in macrophages immediately post injury and thereafter. Interestingly, Dio2 and Dio3 RNA do not appear to be present in the same type of cell throughout the process. These results provide further insight into previously unseen aspects of the crosstalk and synchronized regulation of T3 in injured muscle mediated by deiodinases. The set of findings described here further define the role of deiodinases in muscle repair, shedding light on potential new forms of treatment for sarcopenia and other muscular diseases.
Inoue, A;Matsumoto, T;Ito, Y;Saegusa, M;Takahashi, H;
| DOI: 10.1016/j.humpath.2022.10.008
The number of deaths due to oral squamous carcinoma (OSCC), a malignant tumor of the oral cavity, is on the increase. We examined fibrinogen (FIB) expression in patients with OSCC and developed novel immunoprofile classification methods that include FIB. The plasma FIB level in patients with OSCC was elevated compared with that in patients with non-tumor oral disease (non-T); using a cut-off point of 342 mg/dL, we found the area under the curve-receiver operating characteristic level for OSCC was 0.745. Similarly, FIB expression in OSCC tissues was significantly higher compared with that in non-T tissues. Hierarchical clustering based on the immunoprofile of several markers including FIB, p53, and p16 revealed four groups that could be used to categorize OSCC cases (referred to as immunoprofile subtypes, [IPS], I-IV). Tumors in IPS-II, which were FIB+/p53+, were associated with a significantly worse overall survival (OS) when compared with the other subtypes. We conclude that our IPS classification system can facilitate prognostic evaluation in OSCC, and that quantification of FIB is an important component of the classification strategy for this disease.
Cancer genomics & proteomics
Ferician, AM;Ferician, OC;Cumpanas, AD;Berzava, PL;Nesiu, A;Barmayoun, A;Cimpean, AM;
PMID: 35732321 | DOI: 10.21873/cgp.20334
We previously described four different vascular patterns (reticular, diffuse, fasciculate, and trabecular) in renal cell carcinoma (RCC) suggesting an early and heterogeneous acquisition of perivascular cells most probably due to a particular PDGF pathway gene expression profile. The aim of the study was to study PDGF pathway gene expression profiles, separately for each vascular pattern.TaqMan assay for the PDGF pathway was performed on twelve cases of ccRCC previously evaluated by histopathology, immunohistochemistry, and RNAscope. Gene expression profile was correlated with grade, invasion, vascular patterns, and VEGF.PIK3C3 and SLC9A3 genes were overexpressed in all vascular patterns, but they were significantly correlated with high VEGF mRNA in the reticular and diffuse pattern. STAT1, JAK2, SHC2, SRF and CHUK (IKK) were exclusively overexpressed in cases with diffuse vascular pattern. SLC9A3, CHUK and STAT3 were overexpressed in G2 tumors.Three ccRCC subgroups were defined: 1) PIK3C3 (VSP34)/SLC9A3 which may be proper for anti PIK3C3 inhibitors; 2) VEGFhigh subgroup where association of anti VEGF may be a benefit and 3) JAK2/STAT1 subgroup, potentially being eligible for anti JAK/STAT therapy associated with IKK inhibitors.
Bernier-Latmani, J;Mauri, C;Marcone, R;Renevey, F;Durot, S;He, L;Vanlandewijck, M;Maclachlan, C;Davanture, S;Zamboni, N;Knott, GW;Luther, SA;Betsholtz, C;Delorenzi, M;Brisken, C;Petrova, TV;
PMID: 35810168 | DOI: 10.1038/s41467-022-31571-2
The small intestinal villus tip is the first point of contact for lumen-derived substances including nutrients and microbial products. Electron microscopy studies from the early 1970s uncovered unusual spatial organization of small intestinal villus tip blood vessels: their exterior, epithelial-facing side is fenestrated, while the side facing the villus stroma is non-fenestrated, covered by pericytes and harbors endothelial nuclei. Such organization optimizes the absorption process, however the molecular mechanisms maintaining this highly specialized structure remain unclear. Here we report that perivascular LGR5+ villus tip telocytes (VTTs) are necessary for maintenance of villus tip endothelial cell polarization and fenestration by sequestering VEGFA signaling. Mechanistically, unique VTT expression of the protease ADAMTS18 is necessary for VEGFA signaling sequestration through limiting fibronectin accumulation. Therefore, we propose a model in which LGR5+ ADAMTS18+ telocytes are necessary to maintain a "just-right" level and location of VEGFA signaling in intestinal villus blood vasculature to ensure on one hand the presence of sufficient endothelial fenestrae, while avoiding excessive leakiness of the vessels and destabilization of villus tip epithelial structures.
Science China. Life sciences
Huang, L;Li, R;Ye, L;Zhang, S;Tian, H;Du, M;Qu, C;Li, S;Li, J;Yang, M;Wu, B;Chen, R;Huang, G;Zhong, L;Yang, H;Yu, M;Shi, Y;Wang, C;Zhang, H;Chen, W;Yang, Z;
PMID: 36115892 | DOI: 10.1007/s11427-021-2163-1
The human retina serves as a light detector and signals transmission tissue. Advanced insights into retinal disease mechanisms and therapeutic strategies require a deep understanding of healthy retina molecular events. Here, we sequenced the mRNA of over 0.6 million single cells from human retinas across six regions at nine different ages. Sixty cell sub-types have been identified from the human mature retinas with unique markers. We revealed regional and age differences of gene expression profiles within the human retina. Cell-cell interaction analysis indicated a rich synaptic connection within the retinal cells. Gene expression regulon analysis revealed the specific expression of transcription factors and their regulated genes in human retina cell types. Some of the gene's expression, such as DKK3, are elevated in aged retinas. A further functional investigation suggested that over expression of DKK3 could impact mitochondrial stability. Overall, decoding the molecular dynamic architecture of the human retina improves our understanding of the vision system.
Development (Cambridge, England)
DeBenedittis, P;Karpurapu, A;Henry, A;Thomas, MC;McCord, TJ;Brezitski, K;Prasad, A;Baker, CE;Kobayashi, Y;Shah, SH;Kontos, CD;Tata, PR;Lumbers, RT;Karra, R;
PMID: 36134690 | DOI: 10.1242/dev.200654
Heart regeneration requires multiple cell types to enable cardiomyocyte (CM) proliferation. How these cells interact to create growth niches is unclear. Here, we profile proliferation kinetics of cardiac endothelial cells (CECs) and CMs in the neonatal mouse heart and find that they are spatiotemporally coupled. We show that coupled myovascular expansion during cardiac growth or regeneration is dependent upon VEGF-VEGFR2 signaling, as genetic deletion of Vegfr2 from CECs or inhibition of VEGFA abrogates both CEC and CM proliferation. Repair of cryoinjury displays poor spatial coupling of CEC and CM proliferation. Boosting CEC density after cryoinjury with virus encoding Vegfa enhances regeneration. Using Mendelian randomization, we demonstrate that circulating VEGFA levels are positively linked with human myocardial mass, suggesting that Vegfa can stimulate human cardiac growth. Our work demonstrates the importance of coupled CEC and CM expansion and reveals a myovascular niche that may be therapeutically targeted for heart regeneration.