Ogawa-Wong, A;Carmody, C;Le, K;Marschner, RA;Larsen, PR;Zavacki, AM;Wajner, SM;
PMID: 35888735 | DOI: 10.3390/metabo12070612
The muscle stem-cell niche comprises numerous cell types, which coordinate the regeneration process after injury. Thyroid hormones are one of the main factors that regulate genes linked to skeletal muscle. In this way, deiodinase types 2 and 3 are responsible for the fine-tuning regulation of the local T3 amount. Although their expression and activity have already been identified during muscle regeneration, it is of utmost importance to identify the cell type and temporal pattern of expression after injury to thoroughly comprehend their therapeutic potential. Here, we confirmed the expression of Dio2 and Dio3 in the whole tibialis anterior muscle. We identified, on a single-cell basis, that Dio2 is present in paired box 7 (PAX7)-positive cells starting from day 5 after injury. Dio2 is present in platelet derived growth factor subunit A (PDGFA)-expressing fibro-adipogenic progenitor cells between days 7 and 14 after injury. Dio3 is detected in myogenic differentiation (MYOD)-positive stem cells and in macrophages immediately post injury and thereafter. Interestingly, Dio2 and Dio3 RNA do not appear to be present in the same type of cell throughout the process. These results provide further insight into previously unseen aspects of the crosstalk and synchronized regulation of T3 in injured muscle mediated by deiodinases. The set of findings described here further define the role of deiodinases in muscle repair, shedding light on potential new forms of treatment for sarcopenia and other muscular diseases.
Chen, J;Gannot, N;Li, X;Zhu, R;Zhang, C;Li, P;
PMID: 36522525 | DOI: 10.1007/s12264-022-00994-8
The parabrachial nucleus (PBN) integrates interoceptive and exteroceptive information to control various behavioral and physiological processes including breathing, emotion, and sleep/wake regulation through the neural circuits that connect to the forebrain and the brainstem. However, the precise identity and function of distinct PBN subpopulations are still largely unknown. Here, we leveraged molecular characterization, retrograde tracing, optogenetics, chemogenetics, and electrocortical recording approaches to identify a small subpopulation of neurotensin-expressing neurons in the PBN that largely project to the emotional control regions in the forebrain, rather than the medulla. Their activation induces freezing and anxiety-like behaviors, which in turn result in tachypnea. In addition, optogenetic and chemogenetic manipulations of these neurons revealed their function in promoting wakefulness and maintaining sleep architecture. We propose that these neurons comprise a PBN subpopulation with specific gene expression, connectivity, and function, which play essential roles in behavioral and physiological regulation.
Danaf, J;da Silveira Scarpellini, C;Montandon, G;
PMID: 37089428 | DOI: 10.3389/fphys.2023.1043581
Opioid medications are the mainstay of pain management but present substantial side-effects such as respiratory depression which can be lethal with overdose. Most opioid drugs, such as fentanyl, act on opioid receptors such as the G-protein-coupled µ-opioid receptors (MOR). G-protein-coupled receptors activate pertussis toxin-sensitive G-proteins to inhibit neuronal activity. Binding of opioid ligands to MOR and subsequent activation G proteins βγ is modulated by regulator of G-protein signaling (RGS). The roles of G-proteins βγ and RGS in MOR-mediated inhibition of the respiratory network are not known. Using rodent models to pharmacologically modulate G-protein signaling, we aim to determine the roles of βγ G-proteins and RGS4. We showed that inhibition of βγ G-proteins using gallein perfused in the brainstem circuits regulating respiratory depression by opioid drugs results in complete reversal of respiratory depression. Blocking of RGS4 using CCG55014 did not change the respiratory depression induced by MOR activation despite co-expression of RGS4 and MORs in the brainstem. Our results suggest that neuronal inhibition by opioid drugs is mediated by G-proteins, but not by RGS4, which supports the concept that βγ G-proteins could be molecular targets to develop opioid overdose antidotes without the risks of re-narcotization often found with highly potent opioid drugs. On the other hand, RGS4 mediates opioid analgesia, but not respiratory depression, and RGS4 may be molecular targets to develop pain therapies without respiratory liability.
Cancer genomics & proteomics
Ferician, AM;Ferician, OC;Cumpanas, AD;Berzava, PL;Nesiu, A;Barmayoun, A;Cimpean, AM;
PMID: 35732321 | DOI: 10.21873/cgp.20334
We previously described four different vascular patterns (reticular, diffuse, fasciculate, and trabecular) in renal cell carcinoma (RCC) suggesting an early and heterogeneous acquisition of perivascular cells most probably due to a particular PDGF pathway gene expression profile. The aim of the study was to study PDGF pathway gene expression profiles, separately for each vascular pattern.TaqMan assay for the PDGF pathway was performed on twelve cases of ccRCC previously evaluated by histopathology, immunohistochemistry, and RNAscope. Gene expression profile was correlated with grade, invasion, vascular patterns, and VEGF.PIK3C3 and SLC9A3 genes were overexpressed in all vascular patterns, but they were significantly correlated with high VEGF mRNA in the reticular and diffuse pattern. STAT1, JAK2, SHC2, SRF and CHUK (IKK) were exclusively overexpressed in cases with diffuse vascular pattern. SLC9A3, CHUK and STAT3 were overexpressed in G2 tumors.Three ccRCC subgroups were defined: 1) PIK3C3 (VSP34)/SLC9A3 which may be proper for anti PIK3C3 inhibitors; 2) VEGFhigh subgroup where association of anti VEGF may be a benefit and 3) JAK2/STAT1 subgroup, potentially being eligible for anti JAK/STAT therapy associated with IKK inhibitors.
Huo, J;Du, F;Duan, K;Yin, G;Liu, X;Ma, Q;Dong, D;Sun, M;Hao, M;Su, D;Huang, T;Ke, J;Lai, S;Zhang, Z;Guo, C;Sun, Y;Cheng, L;
PMID: 36952340 | DOI: 10.1016/j.celrep.2023.112300
Mechanical allodynia (MA) represents one prevalent symptom of chronic pain. Previously we and others have identified spinal and brain circuits that transmit or modulate the initial establishment of MA. However, brain-derived descending pathways that control the laterality and duration of MA are still poorly understood. Here we report that the contralateral brain-to-spinal circuits, from Oprm1 neurons in the lateral parabrachial nucleus (lPBNOprm1), via Pdyn neurons in the dorsal medial regions of hypothalamus (dmHPdyn), to the spinal dorsal horn (SDH), act to prevent nerve injury from inducing contralateral MA and reduce the duration of bilateral MA induced by capsaicin. Ablating/silencing dmH-projecting lPBNOprm1 neurons or SDH-projecting dmHPdyn neurons, deleting Dyn peptide from dmH, or blocking spinal κ-opioid receptors all led to long-lasting bilateral MA. Conversely, activation of dmHPdyn neurons or their axonal terminals in SDH can suppress sustained bilateral MA induced by lPBN lesion.
Ochandarena, NE;Niehaus, J;Tassou, A;Scherrer, G;
PMID: 37271281 | DOI: 10.1016/j.neuropharm.2023.109597
Opioids are potent analgesics broadly used for pain management; however, they can produce dangerous side effects including addiction and respiratory depression. These harmful effects have led to an epidemic of opioid abuse and overdose deaths, creating an urgent need for the development of both safer pain medications and treatments for opioid use disorders. Both the analgesic and addictive properties of opioids are mediated by the mu opioid receptor (MOR), making resolution of the cell types and neural circuits responsible for each of the effects of opioids a critical research goal. Single-cell RNA sequencing (scRNA-seq) technology is enabling the identification of MOR-expressing cell types throughout the nervous system, creating new opportunities for mapping distinct opioid effects onto newly discovered cell types. Here, we describe molecularly defined MOR-expressing neuronal cell types throughout the peripheral and central nervous systems and their potential contributions to opioid analgesia and addiction.