Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (8)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Lgr5 (11) Apply Lgr5 filter
  • V-nCoV2019-S (8) Apply V-nCoV2019-S filter
  • SARS-CoV-2 (6) Apply SARS-CoV-2 filter
  • Axin2 (5) Apply Axin2 filter
  • HPV-HR18 (5) Apply HPV-HR18 filter
  • HPV E6/E7 (4) Apply HPV E6/E7 filter
  • (-) Remove PD-L1 filter PD-L1 (4)
  • (-) Remove c-MYC filter c-MYC (4)
  • SOX2 (3) Apply SOX2 filter
  • CD68 (3) Apply CD68 filter
  • CD3E (3) Apply CD3E filter
  • NANOG (3) Apply NANOG filter
  • Klf4 (3) Apply Klf4 filter
  • OLFM4 (3) Apply OLFM4 filter
  • OCT4 (3) Apply OCT4 filter
  • CD274 (2) Apply CD274 filter
  • TGFB1 (2) Apply TGFB1 filter
  • Cd8a (2) Apply Cd8a filter
  • CSF1R (2) Apply CSF1R filter
  • CXCL10 (2) Apply CXCL10 filter
  • CXCL13 (2) Apply CXCL13 filter
  • Ifng (2) Apply Ifng filter
  • Gfral (2) Apply Gfral filter
  • GDF15 (2) Apply GDF15 filter
  • GLP1R (2) Apply GLP1R filter
  • GREM1 (2) Apply GREM1 filter
  • IDO1 (2) Apply IDO1 filter
  • Vegfa (2) Apply Vegfa filter
  • MDM2 (2) Apply MDM2 filter
  • Tgfbr1 (2) Apply Tgfbr1 filter
  • PDCD1 (2) Apply PDCD1 filter
  • PPIB (2) Apply PPIB filter
  • SMOC2 (2) Apply SMOC2 filter
  • BCL6 (2) Apply BCL6 filter
  • sox10 (2) Apply sox10 filter
  • Smad7 (2) Apply Smad7 filter
  • HPV16/18 (2) Apply HPV16/18 filter
  • Siglech (2) Apply Siglech filter
  • GPC3 (2) Apply GPC3 filter
  • Ly6a (2) Apply Ly6a filter
  • VGAT (2) Apply VGAT filter
  • Il-6 (2) Apply Il-6 filter
  • HEV (2) Apply HEV filter
  • HPV HR18 (2) Apply HPV HR18 filter
  • IFN-β (2) Apply IFN-β filter
  • HSATII (2) Apply HSATII filter
  • MALAT1 (1) Apply MALAT1 filter
  • ALB (1) Apply ALB filter
  • Csf3 (1) Apply Csf3 filter
  • Sox9 (1) Apply Sox9 filter

Product

  • (-) Remove RNAscope 2.5 LS Assay filter RNAscope 2.5 LS Assay (8)

Research area

  • Cancer (6) Apply Cancer filter
  • Stem Cells (2) Apply Stem Cells filter
  • Immuno-Oncology (1) Apply Immuno-Oncology filter
  • Immunotherapy (1) Apply Immunotherapy filter
  • Other (1) Apply Other filter

Category

  • Publications (8) Apply Publications filter
Concordance levels of PD-L1 expression by immunohistochemistry, mRNA in situ hybridization, and outcome in lung carcinomas

Hum Pathol.

2018 Jul 31

Coppock JD, Volaric AK, Mills AM, Gru AA.
PMID: 30075155 | DOI: 10.1016/j.humpath.2018.07.025

Targeted inhibition of programmed cell death-1 (PD-1) and its ligand (PD-L1) has emerged as first-line therapy for advanced non-small cell lung cancer. While patients with high PD-L1 expression have improved outcomes with anti-PD-1/PD-L1 directed therapies, use as a predictive biomarker is complicated by robust responses in some patients with low-level expression. Furthermore, reported PD-L1 levels in lung cancers vary widely and discrepancies exist with different antibodies. PD-L1 expression was thus compared by immunohistochemistry (IHC) versus RNA in situ hybridization (ISH) in 112 lung cancers by tissue microarray: 51 adenocarcinoma, 42 squamous cell carcinoma, 9 adenosquamous carcinoma, 5 carcinoid, 3 undifferentiated large-cell carcinoma, 1 large-cell neuroendocrine carcinoma, and 1 small cell carcinoma. At least 1% tumor cell staining was considered positive in each modality. A positive concordance of only 60% (67/112) was found between IHC and ISH. 50% (56/112) were positive by IHC and 50% (56/112) by ISH, however 20% (22/112) were ISH positive but IHC negative. Conversely, 21% (23/112) were IHC positive but ISH negative. There was no significant stratification of PD-L1 positivity by histologic subtype. A trend of more PD-L1 positive stage I cancers identified by ISH versus IHC was observed, however was not statistically significant [50% (27/54) by IHC and 64% (35/55) by ISH, P=.18]. No significant difference in survival was identified, with an average of 5.3months in IHC versus 5.2months in ISH positive cases. The results demonstrate discordance between PD-L1 RNA levels and protein expression in non-small cell lung cancers, warranting comparison as predictive biomarkers.

Automated Tumour Recognition and Digital Pathology Scoring Unravels New Role for PD-L1 in Predicting Good Outcome in ER-/HER2+ Breast Cancer.

Journal of Oncology (2018)

2018 Dec 17

Humphries MP, Hynes S, Bingham V, Cougot D, James J, Patel-Socha F, Parkes EE, Blayney JK, Rorke MA, Irwin GW, McArt DG, Kennedy RD, Mullan PB, McQuaid S, Salto-Tellez M, Buckley NE.
| DOI: 10.1155/2018/2937012

The role of PD-L1 as a prognostic and predictive biomarker is an area of great interest. However, there is a lack of consensus on how to deliver PD-L1 as a clinical biomarker. At the heart of this conundrum is the subjective scoring of PD-L1 IHC in most studies to date. Current standard scoring systems involve separation of epithelial and inflammatory cells and find clinical significance in different percentages of expression, e.g., above or below 1%. Clearly, an objective, reproducible and accurate approach to PD-L1 scoring would bring a degree of necessary consistency to this landscape. Using a systematic comparison of technologies and the application of QuPath, a digital pathology platform, we show that high PD-L1 expression is associated with improved clinical outcome in Triple Negative breast cancer in the context of standard of care (SoC) chemotherapy, consistent with previous findings. In addition, we demonstrate for the first time that high PD-L1 expression is also associated with better outcome in ER- disease as a whole including HER2+ breast cancer. We demonstrate the influence of antibody choice on quantification and clinical impact with the Ventana antibody (SP142) providing the most robust assay in our hands. Through sampling different regions of the tumour, we show that tumour rich regions display the greatest range of PD-L1 expression and this has the most clinical significance compared to stroma and lymphoid rich areas. Furthermore, we observe that both inflammatory and epithelial PD-L1 expression are associated with improved survival in the context of chemotherapy. Moreover, as seen with PD-L1 inhibitor studies, a low threshold of PD-L1 expression stratifies patient outcome. This emphasises the importance of using digital pathology and precise biomarker quantitation to achieve accurate and reproducible scores that can discriminate low PD-L1 expression.
Critical appraisal of PD-L1 reflex diagnostic testing: current standards and future opportunities.

J Thorac Oncol. 2018 Oct 5.

2018 Oct 05

Humphries MP, McQuaid S, Craig S, Bingham V, Maxwell P, Maurya M, McLean F, Sampson J, Higgins P, Greene C, James J, Salto-Tellez M.
PMID: 30296485 | DOI: 10.1016/j.jtho.2018.09.025

Abstract INTRODUCTION: Patient suitability to anti-PD-L1 immune checkpoint inhibition is key to the treatment of non-small cell lung cancer (NSCLC). We present, applied to PD-L1 testing: a comprehensive cross-validation of two immunohistochemistry (IHC) clones; our descriptive experience in diagnostic reflex testing; the concordance of IHC to in-situ RNA (RNA-ISH); and application of digital pathology. METHODS: 813 NSCLC tumour samples collected from 564 diagnostic samples were analysed prospectively and 249 diagnostic samples analysed retrospectively in TMA format. Validated methods for IHC and RNA-ISH were tested in TMAs and full sections and the QuPath system used for digital pathology analysis. RESULTS: Antibody concordance of clones SP263 and 22C3 validation was 97-98% in squamous cell carcinoma and adenocarcinomas, respectively. Clinical NSCLC cases were reported as PD-L1 negative (48%), 1-49% (23%) and >50% (29%), with differences associated to tissue-type and EGFR status. Comparison of IHC and RNA-ISH was highly concordant in both subgroups. Comparison of digital assessment versus manual assessment was highly concordant. Discrepancies were mostly around the 1% clinical threshold. Challenging IHC interpretation included a) calculating the total tumour cell denominator and the nature of PD-L1 expressing cell aggregates in cytology samples; b) peritumoral expression of positive immune cells; c) calculation of positive tumour percentages around clinical thresholds; d) relevance of the 100 malignant cell rule. CONCLUSIONS: Sample type and EGFR status dictate differences in the expected percentage of PD-L1 expression. Analysis of PD-L1 is challenging, and interpretative guidelines are discussed. PD-L1 evaluation by RNA-ISH and digital pathology appear reliable, particularly in adenocarcinomas.
Instestinal toxicity in rats following administration of CDK4/6 inhibitors independent of primary pharmacology.

Mol Cancer Ther.

2018 Nov 06

Thibault S, Hu W, Hirakawa B, Kalabat D, Franks T, Sung T, Khoh-Reiter S, Lu S, Finkelstein M, Jessen B, Sacaan AI.
PMID: 30401694 | DOI: 10.1158/1535-7163.MCT-18-0734

Recently three different cyclin-dependent kinase 4 and 6 (CDK4/6) dual inhibitors were approved for the treatment of breast cancer (palbociclib, ribociclib and abemaciclib), all of which offer comparable therapeutic benefits. Their safety profiles however are different. For example, neutropenia is observed at varying incidences in patients treated with these drugs; however it is the most common adverse event for palbociclib and ribociclib, whereas diarrhea is the most common adverse event observed in patients treated with abemaciclib. In order to understand the mechanism of diarrhea observed with these drugs and in an effort to guide the development of safer drugs, we compared the effects of oral administration of palbociclib, ribociclib and abemaciclib on the gastrointestinal tract of rats using doses intended to produce comparable CDK4/6 inhibition. Rats administered abemaciclib, but not palbociclib or ribociclib, had fecal alterations, unique histopathological findings and distinctive changes in intestinal gene expression. Morphologic changes in the intestine were characterized by proliferation of crypt cells, loss of goblet cells, poorly differentiated and degenerating enterocytes with loss of microvilli and mucosal inflammation. In the jejunum of abemaciclib-treated rats, down-regulation of enterocyte membrane transporters and up-regulation of genes associated with cell proliferation were observed, consistent with activation of the Wnt pathway and downstream transcriptional regulation. Among these CDK4/6 inhibitors, intestinal toxicity was unique to rats treated with abemaciclib, suggesting a mechanism of toxicity not due to primary pharmacology (CDK4/6 inhibition), but to activity at secondary pharmacological targets.

Expression of Embryonic Stem Cell Markers in Microcystic Lymphatic Malformation

Lymphat Res Biol

2019 Mar 22

Eady EK, Brasch HD, de Jongh J, Marsh RW, Tan ST and Itinteang T
PMID: 30901291 | DOI: 10.1089/lrb.2018.0046

AIM: To investigate the expression of embryonic stem cell (ESC) markers in microcystic lymphatic malformation (mLM). METHODS AND RESULTS: Cervicofacial mLM tissue samples from nine patients underwent 3,3'-diaminobenzidine (DAB) immunohistochemical (IHC) staining for ESC markers octamer-binding protein 4 (OCT4), homeobox protein NANOG, sex determining region Y-box 2 (SOX2), Krupple-like factor (KLF4), and proto-oncogene c-MYC. Transcriptional activation of these ESC markers was investigated using real-time polymerase chain reaction (RT-qPCR) and colorimetric in situ hybridization (CISH) on four and five of these mLM tissue samples, respectively. Immunofluorescence (IF) IHC staining was performed on three of these mLM tissue samples to investigate localization of these ESC markers. DAB and IF IHC staining demonstrated the expression of OCT4, SOX2, NANOG, KLF4, and c-MYC on the endothelium of lesional vessels with abundant expression of c-MYC and SOX2, which was also present on the cells within the stroma, in all nine mLM tissue samples. RT-qPCR and CISH confirmed transcriptional activation of all these ESC markers investigated. CONCLUSIONS: These findings suggest the presence of a primitive population on the endothelium of lesional vessels and the surrounding stroma in mLM. The abundant expression of the progenitor-associated markers SOX2 and c-MYC suggests that the majority are of progenitor phenotype with a small number of ESC-like cells.
Diagnostic Utility of PD-L1 Expression in Lung Adenocarcinoma: Immunohistochemistry and RNA In Situ Hybridization.

Appl Immunohistochem Mol Morphol.

2017 Sep 29

Gafeer MM, Hosny Mohammed K, Ormenisan-Gherasim C, Choudhary F, Siddiqui MT, Cohen C.
PMID: 28968265 | DOI: 10.1097/PAI.0000000000000595

Abstract

BACKGROUND:

Programmed death receptor and programmed death ligand (PD-L1) are immunoregulatory proteins. Nonsmall cell lung cancer bypasses the immune system through the induction of protumorigenic immunosuppressive changes. The better understanding of immunology and antitumor immune responses has brought the promising development of novel immunotherapy agents like programmed death receptor checkpoint inhibitors. The aim of this study was to investigate the expression of PD-L1 in lung adenocarcinoma (ADC), comparing 2 different technologies: immunohistochemistry (IHC) by 2 methods versus RNA in situ hybridization (RISH).

METHODOLOGY:

In total, 20 cases of ADC of the lung and 4 samples of metastatic colon ADC were selected. Evaluation of PD-L1 expression was performed by IHC and RISH. RISH was performed using RNAscope. Both methods were scored in tumor cells and quantified using combined intensity and proportion scores.

RESULTS:

Eight of 20 (40%) lung ADC and 2 of 4 (50%) colon ADC were positive for PD-L1 with Cell Signaling IHC, and 65% lung ADC were positive by Dako IHC (13/20). All 4 cases of colon ADC were negative. When evaluated by RISH, 12 lung ADC (60%) and 1 colon ADC (25%) were PD-L1 positive.

CONCLUSIONS:

RNAscope probes provide sensitive and specific detection of PD-L1 in lung ADC. Both IHC methods (Cell Signaling and Dako) show PD-L1 expression, with the Dako method more sensitive (40% vs. 65%). This study illustrates the utility of RISH and Cell Signaling IHC as complementary diagnostic tests, and Food and Drug Administration approved Dako IHC as a companion diagnostic test.

Cell Populations Expressing Stemness-Associated Markers in Lung Adenocarcinoma

Life (Basel, Switzerland)

2021 Oct 18

Paterson, C;Kilmister, EJ;Brasch, HD;Bockett, N;Patel, J;Paterson, E;Purdie, G;Galvin, S;Davis, PF;Itinteang, T;Tan, ST;
PMID: 34685477 | DOI: 10.3390/life11101106

The stemness-associated markers OCT4, NANOG, SOX2, KLF4 and c-MYC are expressed in numerous cancer types suggesting the presence of cancer stem cells (CSCs). Immunohistochemical (IHC) staining performed on 12 lung adenocarcinoma (LA) tissue samples showed protein expression of OCT4, NANOG, SOX2, KLF4 and c-MYC, and the CSC marker CD44. In situ hybridization (ISH) performed on six of the LA tissue samples showed mRNA expression of OCT4, NANOG, SOX2, KLF4 and c-MYC. Immunofluorescence staining performed on three of the tissue samples showed co-expression of OCT4 and c-MYC with NANOG, SOX2 and KLF4 by tumor gland cells, and expression of OCT4 and c-MYC exclusively by cells within the stroma. RT-qPCR performed on five LA-derived primary cell lines showed mRNA expression of all the markers except SOX2. Western blotting performed on four LA-derived primary cell lines demonstrated protein expression of all the markers except SOX2 and NANOG. Initial tumorsphere assays performed on four LA-derived primary cell lines demonstrated 0-80% of tumorspheres surpassing the 50 µm threshold. The expression of the stemness-associated markers OCT4, SOX2, NANOG, KFL4 and c-MYC by LA at the mRNA and protein level, and the unique expression patterns suggest a putative presence of CSC subpopulations within LA, which may be a novel therapeutic target for this cancer. Further functional studies are required to investigate the possession of stemness traits.
Expression of Embryonic Stem Cell Markers on the Microvessels of WHO Grade I Meningioma

Front. Surg.

2018 Oct 26

Shivapathasundram G, Wickremesekera AC, Brasch HD, Marsh R, Tan ST, Itinteang T.
PMID: - | DOI: 10.3389/fsurg.2018.00065

Aim: The presence of cells within meningioma (MG) that express embryonic stem cell (ESC) markers has been previously reported. However, the precise location of these cells has yet to be determined.

Methods: 3,3-Diaminobenzidine (DAB) immunohistochemical (IHC) staining was performed on 11 WHO grade I MG tissue samples for the expression of the ESC markers OCT4, NANOG, SOX2, KLF4 and c-MYC. Immunofluorescence (IF) IHC staining was performed to investigate the localization of each of these ESC markers. NanoString and colorimetric in situ hybridization (CISH) mRNA expression analyses were performed on six snap-frozen MG tissue samples to confirm transcriptional activation of these proteins, respectively.

Results: DAB IHC staining demonstrated expression of OCT4, NANOG, SOX2, KLF4, and c-MYC within all 11 MG tissue samples. IF IHC staining demonstrated the expression of the ESC markers OCT4, NANOG, SOX2, KLF4, and c-MYC on both the endothelial and pericyte layers of the microvessels. NanoString and CISH mRNA analyses confirmed transcription activation of these ESC markers.

Conclusion: This novel finding of the expression of all aforementioned ESC markers in WHO grade I MG infers the presence of a putative stem cells population which may give rise to MG.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?