Carr MJ, Toma JS, Johnston APW, Steadman PE, Yuzwa SA, Mahmud N, Frankland PW, Kaplan DR, Miller FD.
PMID: - | DOI: 10.1016/j.stem.2018.10.024
Peripheral innervation plays an important role in regulating tissue repair and regeneration. Here we provide evidence that injured peripheral nerves provide a reservoir of mesenchymalprecursor cells that can directly contribute to murine digit tip regeneration and skin repair. In particular, using single-cell RNA sequencing and lineage tracing, we identify transcriptionally distinct mesenchymal cell populations within the control and injured adult nerve, including neural crest-derived cells in the endoneurium with characteristics of mesenchymal precursor cells. Culture and transplantation studies show that these nerve-derived mesenchymal cells have the potential to differentiate into non-nerve lineages. Moreover, following digit tip amputation, neural crest-derived nerve mesenchymal cells contribute to the regenerative blastema and, ultimately, to the regenerated bone. Similarly, neural crest-derived nerve mesenchymal cells contribute to the dermis during skin wound healing. These findings support a model where peripheral nerves directly contribute mesenchymal precursor cells to promote repair and regeneration of injured mammalian tissues.
Davies, ER;Ryan, KA;Bewley, KR;Coombes, NS;Salguero, FJ;Carnell, OT;Biddlecombe, S;Charlton, M;Challis, A;Cross, ES;Handley, A;Ngabo, D;Weldon, TM;Hall, Y;Funnell, SGP;
PMID: 37243219 | DOI: 10.3390/v15051133
The ongoing emergence of SARS-CoV-2 virus variants remains a source of concern because it is accompanied by the potential for increased virulence as well as evasion of immunity. Here we show that, although having an almost identical spike gene sequence as another Omicron variant (BA.5.2.1), a BA.4 isolate lacked all the typical disease characteristics of other isolates seen in the Golden Syrian hamster model despite replicating almost as effectively. Animals infected with BA.4 had similar viral shedding profiles to those seen with BA.5.2.1 (up to day 6 post-infection), but they all failed to lose weight or present with any other significant clinical signs. We hypothesize that this lack of detectable signs of disease during infection with BA.4 was due to a small (nine nucleotide) deletion (∆686-694) in the viral genome (ORF1ab) responsible for the production of non-structural protein 1, which resulted in the loss of three amino acids (aa 141-143).
Nishi, K;Yoshimoto, S;Tanaka, T;Kimura, S;Shinchi, Y;Yamano, T;
PMID: 36618501 | DOI: 10.7759/cureus.33421
A major target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the epipharyngeal mucosa. Epipharyngeal abrasive therapy (EAT) is a Japanese treatment for chronic epipharyngitis. EAT is a treatment for chronic epipharyngitis in Japan that involves applying zinc chloride as an anti-inflammatory agent to the epipharyngeal mucosa. Here, we present a case of a 21-year-old man with chronic coughing that persisted for four months after a diagnosis of mild coronavirus disease 2019 (COVID-19), who was treated by EAT. We diagnosed chronic epipharyngitis as the cause of the chronic cough after the SARS-CoV-2 infection. SARS-CoV-2 spike RNA had persisted in the epipharyngeal mucosa of this Long COVID patient. EAT was performed once a week for three months, which eliminated residual SARS-CoV-2 RNA and reduced epipharyngeal inflammation. Moreover, a reduction in the expression of proinflammatory cytokines was found by histopathological examination. We speculate that the virus was excreted with the drainage induced by EAT, which stopped the secretion of proinflammatory cytokines. This case study suggests that EAT is a useful treatment for chronic epipharyngitis involving long COVID.
Liu, S;Stauft, CB;Selvaraj, P;Chandrasekaran, P;D'Agnillo, F;Chou, CK;Wu, WW;Lien, CZ;Meseda, CA;Pedro, CL;Starost, MF;Weir, JP;Wang, TT;
PMID: 36357440 | DOI: 10.1038/s41467-022-34571-4
Few live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are in pre-clinical or clinical development. We seek to attenuate SARS-CoV-2 (isolate WA1/2020) by removing the polybasic insert within the spike protein and the open reading frames (ORFs) 6-8, and by introducing mutations that abolish non-structural protein 1 (Nsp1)-mediated toxicity. The derived virus (WA1-ΔPRRA-ΔORF6-8-Nsp1K164A/H165A) replicates to 100- to 1000-fold-lower titers than the ancestral virus and induces little lung pathology in both K18-human ACE2 (hACE2) transgenic mice and Syrian hamsters. Immunofluorescence and transcriptomic analyses of infected hamsters confirm that three-pronged genetic modifications attenuate the proinflammatory pathways more than the removal of the polybasic cleavage site alone. Finally, intranasal administration of just 100 PFU of the WA1-ΔPRRA-ΔORF6-8-Nsp1K164A/H165A elicits robust antibody responses in Syrian hamsters and protects against SARS-CoV-2-induced weight loss and pneumonia. As a proof-of-concept study, we demonstrate that live but sufficiently attenuated SARS-CoV-2 vaccines may be attainable by rational design.
Ebenig, A;Muraleedharan, S;Kazmierski, J;Todt, D;Auste, A;Anzaghe, M;Gömer, A;Postmus, D;Gogesch, P;Niles, M;Plesker, R;Miskey, C;Gellhorn Serra, M;Breithaupt, A;Hörner, C;Kruip, C;Ehmann, R;Ivics, Z;Waibler, Z;Pfaender, S;Wyler, E;Landthaler, M;Kupke, A;Nouailles, G;Goffinet, C;Brown, RJP;Mühlebach, MD;
PMID: 35952673 | DOI: 10.1016/j.celrep.2022.111214
Vaccine-associated enhanced respiratory disease (VAERD) is a severe complication for some respiratory infections. To investigate the potential for VAERD induction in coronavirus disease 2019 (COVID-19), we evaluate two vaccine leads utilizing a severe hamster infection model: a T helper type 1 (TH1)-biased measles vaccine-derived candidate and a TH2-biased alum-adjuvanted, non-stabilized spike protein. The measles virus (MeV)-derived vaccine protects the animals, but the protein lead induces VAERD, which can be alleviated by dexamethasone treatment. Bulk transcriptomic analysis reveals that our protein vaccine prepares enhanced host gene dysregulation in the lung, exclusively up-regulating mRNAs encoding the eosinophil attractant CCL-11, TH2-driving interleukin (IL)-19, or TH2 cytokines IL-4, IL-5, and IL-13. Single-cell RNA sequencing (scRNA-seq) identifies lung macrophages or lymphoid cells as sources, respectively. Our findings imply that VAERD is caused by the concerted action of hyperstimulated macrophages and TH2 cytokine-secreting lymphoid cells and potentially links VAERD to antibody-dependent enhancement (ADE). In summary, we identify the cytokine drivers and cellular contributors that mediate VAERD after TH2-biased vaccination.
Science translational medicine
Dinnon, KH;Leist, SR;Okuda, K;Dang, H;Fritch, EJ;Gully, KL;De la Cruz, G;Evangelista, MD;Asakura, T;Gilmore, RC;Hawkins, P;Nakano, S;West, A;Schäfer, A;Gralinski, LE;Everman, JL;Sajuthi, SP;Zweigart, MR;Dong, S;McBride, J;Cooley, MR;Hines, JB;Love, MK;Groshong, SD;VanSchoiack, A;Phelan, SJ;Liang, Y;Hether, T;Leon, M;Zumwalt, RE;Barton, LM;Duval, EJ;Mukhopadhyay, S;Stroberg, E;Borczuk, A;Thorne, LB;Sakthivel, MK;Lee, YZ;Hagood, JS;Mock, JR;Seibold, MA;O'Neal, WK;Montgomery, SA;Boucher, RC;Baric, RS;
PMID: 35857635 | DOI: 10.1126/scitranslmed.abo5070
A subset of individuals who recover from coronavirus disease 2019 (COVID-19) develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal tissue samples. The mouse-adapted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute to clinical recovery phases. At 15 to 120 days post-virus clearance, pulmonary histologic findings included subpleural lesions composed of collagen, proliferative fibroblasts, and chronic inflammation, including tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal up-regulation of pro-fibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early anti-fibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.
Johnston AP, Yuzwa SA, Carr MJ, Mahmud N, Storer MA, Krause MP, Jones K, Paul S, Kaplan DR, Miller FD.
PMID: 27376984 | DOI: 10.1016/j.stem.2016.06.002
Adult mammals have lost multi-tissue regenerative capacity, except for the distal digit, which is able to regenerate via mechanisms that remain largely unknown. Here, we show that, after adult mouse distal digit removal, nerve-associated Schwann cell precursors (SCPs) dedifferentiate and secrete growth factors that promote expansion of the blastema and digit regeneration. When SCPs were dysregulated or ablated, mesenchymal precursor proliferation in the blastema was decreased and nail and bone regeneration were impaired. Transplantation of exogenous SCPs rescued these regeneration defects. We found that SCPs secrete factors that promote self-renewal of mesenchymal precursors, and we used transcriptomic and proteomic analysis to define candidate factors. Two of these, oncostatin M (OSM) and platelet-derived growth factor AA (PDGF-AA), are made by SCPs in the regenerating digit and rescued the deficits in regeneration caused by loss of SCPs. As all peripheral tissues contain nerves, these results could have broad implications for mammalian tissue repair and regeneration.
Sol�-Boldo L, Raddatz G, Sch�tz S, Mallm JP, Rippe K, Lonsdorf AS, Rodr�guez-Paredes M, Lyko F
PMID: 32327715 | DOI: 10.1038/s42003-020-0922-4
Fibroblasts are an essential cell population for human skin architecture and function. While fibroblast heterogeneity is well established, this phenomenon has not been analyzed systematically yet. We have used single-cell RNA sequencing to analyze the transcriptomes of more than 5,000 fibroblasts from a sun-protected area in healthy human donors. Our results define four main subpopulations that can be spatially localized and show differential secretory, mesenchymal and pro-inflammatory functional annotations. Importantly, we found that this fibroblast 'priming' becomes reduced with age. We also show that aging causes a substantial reduction in the predicted interactions between dermal fibroblasts and other skin cells, including undifferentiated keratinocytes at the dermal-epidermal junction. Our work thus provides evidence for a functional specialization of human dermal fibroblasts and identifies the partial loss of cellular identity as an important age-related change in the human dermis. These findings have important implications for understanding human skin aging and its associated phenotypes.
Wang, Z;Li, Z;Shi, W;Zhu, D;Hu, S;Dinh, PC;Cheng, K;
PMID: 37352360 | DOI: 10.1126/sciadv.abo4100
The circulating flu viruses merging with the ongoing COVID-19 pandemic raises a more severe threat that promotes the infectivity of SARS-CoV-2 associated with higher mortality rates. Here, we conjugated recombinant receptor binding domain (RBD) of SARS-CoV-2 spike protein onto inactivated influenza A virus (Flu) to develop a SARS-CoV-2 virus-like particle (VLP) vaccine with two-hit protection. This double-hit vaccine (Flu-RBD) not only induced protective immunities against SARS-CoV-2 but also remained functional as a flu vaccine. The Flu core improved the retention and distribution of Flu-RBD vaccine in the draining lymph nodes, with enhanced immunogenicity. In a hamster model of live SARS-CoV-2 infection, two doses of Flu-RBD efficiently protected animals against viral infection. Furthermore, Flu-RBD VLP elicited a strong neutralization activity against both SARS-CoV-2 Delta pseudovirus and wild-type influenza A H1N1 inactivated virus in mice. Overall, the Flu-RBD VLP vaccine is a promising candidate for combating COVID-19, influenza A, and coinfection.
Bulstrode, H;Girdler, GC;Gracia, T;Aivazidis, A;Moutsopoulos, I;Young, AMH;Hancock, J;He, X;Ridley, K;Xu, Z;Stockley, JH;Finlay, J;Hallou, C;Fajardo, T;Fountain, DM;van Dongen, S;Joannides, A;Morris, R;Mair, R;Watts, C;Santarius, T;Price, SJ;Hutchinson, PJA;Hodson, EJ;Pollard, SM;Mohorianu, I;Barker, RA;Sweeney, TR;Bayraktar, O;Gergely, F;Rowitch, DH;
PMID: 36174572 | DOI: 10.1016/j.neuron.2022.09.002
Zika virus (ZIKV) can infect human developing brain (HDB) progenitors resulting in epidemic microcephaly, whereas analogous cellular tropism offers treatment potential for the adult brain cancer, glioblastoma (GBM). We compared productive ZIKV infection in HDB and GBM primary tissue explants that both contain SOX2+ neural progenitors. Strikingly, although the HDB proved uniformly vulnerable to ZIKV infection, GBM was more refractory, and this correlated with an innate immune expression signature. Indeed, GBM-derived CD11b+ microglia/macrophages were necessary and sufficient to protect progenitors against ZIKV infection in a non-cell autonomous manner. Using SOX2+ GBM cell lines, we found that CD11b+-conditioned medium containing type 1 interferon beta (IFNβ) promoted progenitor resistance to ZIKV, whereas inhibition of JAK1/2 signaling restored productive infection. Additionally, CD11b+ conditioned medium, and IFNβ treatment rendered HDB progenitor lines and explants refractory to ZIKV. These findings provide insight into neuroprotection for HDB progenitors as well as enhanced GBM oncolytic therapies.
Hein, RFC;Wu, JH;Holloway, EM;Frum, T;Conchola, AS;Tsai, YH;Wu, A;Fine, AS;Miller, AJ;Szenker-Ravi, E;Yan, KS;Kuo, CJ;Glass, I;Reversade, B;Spence, JR;
PMID: 35679862 | DOI: 10.1016/j.devcel.2022.05.010
The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5. Functional experiments using organoid models, explant cultures, and FACS-isolated RSPO2+ mesenchyme show that RSPO2 is a critical niche cue that potentiates WNT signaling in bud tip progenitors to support their maintenance and multipotency.
Wanner, N;Andrieux, G;Badia-I-Mompel, P;Edler, C;Pfefferle, S;Lindenmeyer, MT;Schmidt-Lauber, C;Czogalla, J;Wong, MN;Okabayashi, Y;Braun, F;Lütgehetmann, M;Meister, E;Lu, S;Noriega, MLM;Günther, T;Grundhoff, A;Fischer, N;Bräuninger, H;Lindner, D;Westermann, D;Haas, F;Roedl, K;Kluge, S;Addo, MM;Huber, S;Lohse, AW;Reiser, J;Ondruschka, B;Sperhake, JP;Saez-Rodriguez, J;Boerries, M;Hayek, SS;Aepfelbacher, M;Scaturro, P;Puelles, VG;Huber, TB;
PMID: 35347318 | DOI: 10.1038/s42255-022-00552-6
Extrapulmonary manifestations of COVID-19 have gained attention due to their links to clinical outcomes and their potential long-term sequelae1. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) displays tropism towards several organs, including the heart and kidney. Whether it also directly affects the liver has been debated2,3. Here we provide clinical, histopathological, molecular and bioinformatic evidence for the hepatic tropism of SARS-CoV-2. We find that liver injury, indicated by a high frequency of abnormal liver function tests, is a common clinical feature of COVID-19 in two independent cohorts of patients with COVID-19 requiring hospitalization. Using autopsy samples obtained from a third patient cohort, we provide multiple levels of evidence for SARS-CoV-2 liver tropism, including viral RNA detection in 69% of autopsy liver specimens, and successful isolation of infectious SARS-CoV-2 from liver tissue postmortem. Furthermore, we identify transcription-, proteomic- and transcription factor-based activity profiles in hepatic autopsy samples, revealing similarities to the signatures associated with multiple other viral infections of the human liver. Together, we provide a comprehensive multimodal analysis of SARS-CoV-2 liver tropism, which increases our understanding of the molecular consequences of severe COVID-19 and could be useful for the identification of organ-specific pharmacological targets.