ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Vet Pathol
2019 Mar 21
Palmer MV, Wiarda J, Kanipe C and Thacker TC
PMID: 30895908 | DOI: 10.1177/0300985819833454
Proceedings of the National Academy of Sciences of the United States of America
2021 Jul 06
Gerhardt, LMS;Liu, J;Koppitch, K;Cippà, PE;McMahon, AP;
PMID: 34183416 | DOI: 10.1073/pnas.2026684118
Osteoarthritis and Cartilage
2021 Apr 01
Zhu, L;Miotla Zarebska, J;Batchelor, V;Lin, W;Goldberg, R;Klein, J;Vincent, T;
| DOI: 10.1016/j.joca.2021.02.239
Neuron.
2018 Sep 19
Snyder LM, Chiang MC, Loeza-Alcocer E, Omori Y, Hachisuka J, Sheahan TD, Gale JR, Adelman PC, Sypek EI, Fulton SA, Friedman RL, Wright MC, Duque MG, Lee YS, Hu Z, Huang H, Cai X, Meerschaert KA, Nagarajan V, Hirai T, Scherrer G, Kaplan DH, Porreca F, Davi
PMID: 30236284 | DOI: 10.1016/j.neuron.2018.08.044
Primary afferents are known to be inhibited by kappa opioid receptor (KOR) signaling. However, the specific types of somatosensory neurons that express KOR remain unclear. Here, using a newly developed KOR-cre knockin allele, viral tracing, single-cell RT-PCR, and ex vivo recordings, we show that KOR is expressed in several populations of primary afferents: a subset of peptidergic sensory neurons, as well as low-threshold mechanoreceptors that form lanceolate or circumferential endings around hair follicles. We find that KOR acts centrally to inhibit excitatory neurotransmission from KOR-cre afferents in laminae I and III, and this effect is likely due to KOR-mediated inhibition of Ca2+ influx, which we observed in sensory neurons from both mouse and human. In the periphery, KOR signaling inhibits neurogenic inflammation and nociceptor sensitization by inflammatory mediators. Finally, peripherally restricted KOR agonists selectively reduce pain and itch behaviors, as well as mechanical hypersensitivity associated with a surgical incision. These experiments provide a rationale for the use of peripherally restricted KOR agonists for therapeutic treatment.
Vet Immunol Immunopathol.
2017 Oct 27
Rusk RA, Palmer MV, Waters WR, McGill JL.
PMID: 29129226 | DOI: 10.1016/j.vetimm.2017.10.004
Bovine γδ T cells are amongst the first cells to accumulate at the site of Mycobacterium bovis infection; however, their role in the developing lesion remains unclear. We utilized transcriptomics analysis, in situ hybridization, and a macrophage/γδ T cell co-culture system to elucidate the role of γδ T cells in local immunity to M. bovis infection. Transcriptomics analysis revealed that γδ T cells upregulated expression of several novel, immune-associated genes in response to stimulation with M. bovis antigen. BCG-infected macrophage/γδ T cell co-cultures confirmed the results of our RNAseq analysis, and revealed that γδ T cells from M. bovis-infected animals had a significant impact on bacterial viability. Analysis of γδ T cells within late-stage M. bovis granulomas revealed significant expression of IFN-γ and CCL2, but not IL-10, IL-22, or IL-17. Our results suggest γδ T cells influence local immunity to M. bovis through cytokine secretion and direct effects on bacterial burden.
Neuron
2019 Mar 13
Massaly N, Copits BA, Wilson-Poe AR, Hipólito L, Markovic T, Yoon HJ, Liu S, Walicki MC, Bhatti DL, Sirohi S, Klaas A, Walker BM, Neve R, Cahill CM, Shoghi KI, Gereau RWIV, McCall JG, Al-Hasani R, Bruchas MR, Morón JA.
PMID: 30878290 | DOI: 10.1016/j.neuron.2019.02.029
Negative affective states affect quality of life for patients suffering from pain. These maladaptive emotional states can lead to involuntary opioid overdose and many neuropsychiatric comorbidities. Uncovering the mechanisms responsible for pain-induced negative affect is critical in addressing these comorbid outcomes. The nucleus accumbens (NAc) shell, which integrates the aversive and rewarding valence of stimuli, exhibits plastic adaptations in the presence of pain. In discrete regions of the NAc, activation of the kappa opioid receptor (KOR) decreases the reinforcing properties of rewards and induces aversive behaviors. Using complementary techniques, we report that in vivo recruitment of NAc shell dynorphin neurons, acting through KOR, is necessary and sufficient to drive pain-induced negative affect. Taken together, our results provide evidence that pain-induced adaptations in the kappa opioid system within the NAc shell represent a functional target for therapeutic intervention that could circumvent pain-induced affective disorders.
Nature communications
2022 Nov 11
Vollmer, KM;Green, LM;Grant, RI;Winston, KT;Doncheck, EM;Bowen, CW;Paniccia, JE;Clarke, RE;Tiller, A;Siegler, PN;Bordieanu, B;Siemsen, BM;Denton, AR;Westphal, AM;Jhou, TC;Rinker, JA;McGinty, JF;Scofield, MD;Otis, JM;
PMID: 36369508 | DOI: 10.1038/s41467-022-34517-w
Aging cell
2022 Nov 17
Xu, Q;Rydz, C;Nguyen Huu, VA;Rocha, L;Palomino La Torre, C;Lee, I;Cho, W;Jabari, M;Donello, J;Lyon, DC;Brooke, RT;Horvath, S;Weinreb, RN;Ju, WK;Foik, A;Skowronska-Krawczyk, D;
PMID: 36397653 | DOI: 10.1111/acel.13737
Cell reports
2023 Mar 28
Sullivan, KE;Kraus, L;Kapustina, M;Wang, L;Stach, TR;Lemire, AL;Clements, J;Cembrowski, MS;
PMID: 36881508 | DOI: 10.1016/j.celrep.2023.112206
Science.
2016 Jun 24
Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, Wildberg A, Gao D, Fung HL, Chen S, Vijayaraghavan R, Wong J, Chen A, Sheng X, Kaper F, Shen R, Ronaghi M, Fan JB, Wang W, Chun J, Zhang K.
PMID: 27339989 | DOI: 10.1126/science.aaf1204
The human brain has enormously complex cellular diversity and connectivities fundamental to our neural functions, yet difficulties in interrogating individual neurons has impeded understanding of the underlying transcriptional landscape. We developed a scalable approach to sequence and quantify RNA molecules in isolated neuronal nuclei from a postmortem brain, generating 3227 sets of single-neuron data from six distinct regions of the cerebral cortex. Using an iterative clustering and classification approach, we identified 16 neuronal subtypes that were further annotated on the basis of known markers and cortical cytoarchitecture. These data demonstrate a robust and scalable method for identifying and categorizing single nuclear transcriptomes, revealing shared genes sufficient to distinguish previously unknown and orthologous neuronal subtypes as well as regional identity and transcriptomic heterogeneity within the human brain.
Research square
2021 Nov 24
Gajewski, T;Rouhani, S;Trujillo, J;Pyzer, A;Yu, J;Fessler, J;Cabanov, A;Higgs, E;Cron, K;Zha, Y;Lu, Y;Bloodworth, J;Abasiyanik, M;Okrah, S;Flood, B;Hatogai, K;Leung, M;Pezeshk, A;Kozloff, L;Reschke, R;Strohbehn, G;Chervin, CS;Kumar, M;Schrantz, S;Madariaga, ML;Beavis, K;Yeo, KT;Sweis, R;Segal, J;Tay, S;Izumchenko, E;Mueller, J;Chen, L;
PMID: 34845442 | DOI: 10.21203/rs.3.rs-1083825/v1
Cell Rep.
2017 May 16
Liou GY, Bastea L, Fleming A, Döppler H, Edenfield BH, Dawson DW, Zhang L, Bardeesy N, Storz P.
PMID: 28514653 | DOI: 10.1016/j.celrep.2017.04.052
The contributions of the innate immune system to the development of pancreatic cancer are still ill defined. Inflammatory macrophages can initiate metaplasia of pancreatic acinar cells to a duct-like phenotype (acinar-to-ductal metaplasia [ADM]), which then gives rise to pancreatic intraepithelial neoplasia (PanIN) when oncogenic KRas is present. However, it remains unclear when and how this inflammatory macrophage population is replaced by tumor-promoting macrophages. Here, we demonstrate the presence of interleukin-13 (IL-13), which can convert inflammatory into Ym1+ alternatively activated macrophages, at ADM/PanIN lesions. We further show that Ym1+ macrophages release factors, such as IL-1ra and CCL2, to drive pancreatic fibrogenesis and tumorigenesis. Treatment of mice expressing oncogenic KRas under an acinar cell-specific promoter with a neutralizing antibody for IL-13 significantly decreased the accumulation of alternatively activated macrophages at these lesions, resulting in decreased fibrosis and lesion growth.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com