ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Progress in neurobiology
2023 May 04
Lotun, A;Li, D;Xu, H;Su, Q;Tuncer, S;Sanmiguel, J;Mooney, M;Baer, CE;Ulbrich, R;Eyles, SJ;Strittmatter, L;Hayward, LJ;Gessler, DJ;Gao, G;
PMID: 37149081 | DOI: 10.1016/j.pneurobio.2023.102460
Alzheimers Res Ther.
2019 Feb 02
Magno L, Lessard CB, Martins M, Lang V, Cruz P, Asi Y, Katan M, Bilsland J, Lashley T, Chakrabarty P, Golde TE, Whiting PJ.
PMID: 30711010 | DOI: 10.1186/s13195-019-0469-0
Recent Genome Wide Association Studies (GWAS) have identified novel rare coding variants in immune genes associated with late onset Alzheimer's disease (LOAD). Amongst these, a polymorphism in phospholipase C-gamma 2 (PLCG2) P522R has been reported to be protective against LOAD. PLC enzymes are key elements in signal transmission networks and are potentially druggable targets. PLCG2 is highly expressed in the hematopoietic system. Hypermorphic mutations in PLCG2 in humans have been reported to cause autoinflammation and immune disorders, suggesting a key role for this enzyme in the regulation of immune cell function.
We assessed PLCG2 distribution in human and mouse brain tissue via immunohistochemistry and in situ hybridization. We transfected heterologous cell systems (COS7 and HEK293T cells) to determine the effect of the P522R AD-associated variant on enzymatic function using various orthogonal assays, including a radioactive assay, IP-One ELISA, and calcium assays.
PLCG2 expression is restricted primarily to microglia and granule cells of the dentate gyrus. Plcg2 mRNA is maintained in plaque-associated microglia in the cerebral tissue of an AD mouse model. Functional analysis of the p.P522R variant demonstrated a small hypermorphic effect of the mutation on enzyme function.
The PLCG2 P522R variant is protective against AD. We show that PLCG2 is expressed in brain microglia, and the p.P522R polymorphism weakly increases enzyme function. These data suggest that activation of PLCγ2 and not inhibition could be therapeutically beneficial in AD. PLCγ2 is therefore a potential target for modulating microglia function in AD, and a small molecule drug that weakly activates PLCγ2 may be one potential therapeutic approach.
Acta neuropathologica
2023 Jun 24
Forrest, SL;Lee, S;Nassir, N;Martinez-Valbuena, I;Sackmann, V;Li, J;Ahmed, A;Tartaglia, MC;Ittner, LM;Lang, AE;Uddin, M;Kovacs, GG;
PMID: 37354322 | DOI: 10.1007/s00401-023-02604-x
Neuron
2017 May 03
Voronova A, Yuzwa SA, Wang BS, Zahr S, Syal C, Wang J, Kaplan DR, Miller FD.
PMID: 28472653 | DOI: 10.1016/j.neuron.2017.04.018
During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture. Moreover, when MGE interneurons are genetically ablated in vivo prior to their migration, this causes a deficit in cortical oligodendrogenesis. Modeling of the interneuron-precursor paracrine interaction using transcriptome data identifies the cytokine fractalkine as responsible for the pro-oligodendrocyte effect in culture. This paracrine interaction is important in vivo, since knockdown of the fractalkine receptor CX3CR1 in embryonic cortical precursors, or constitutive knockout of CX3CR1, causes decreased numbers of oligodendrocyte progenitor cells (OPCs) and oligodendrocytes in the postnatal cortex. Thus, in addition to their role in regulating neuronal excitability, interneurons act in a paracrine fashion to promote the developmental genesis of oligodendrocytes.
iScience.
2020 Mar 27
Zhu H, Meissner LE, Byrnes C, Tuymetova G, Tifft CJ, Proia RL
PMID: 32179479 | DOI: 10.1016/j.isci.2020.100957
Proceedings of the National Academy of Sciences of the United States of America
2022 Nov 15
Caligiuri, SPB;Howe, WM;Wills, L;Smith, ACW;Lei, Y;Bali, P;Heyer, MP;Moen, JK;Ables, JL;Elayouby, KS;Williams, M;Fillinger, C;Oketokoun, Z;Lehmann, VE;DiFeliceantonio, AG;Johnson, PM;Beaumont, K;Sebra, RP;Ibanez-Tallon, I;Kenny, PJ;
PMID: 36346845 | DOI: 10.1073/pnas.2209870119
J Neurotrauma.
2018 Apr 25
Flygt J, Ruscher K, Norberg A, Mir A, Gram H, Clausen F, Marklund N.
PMID: 29690837 | DOI: 10.1089/neu.2018.5660
Traumatic brain injury (TBI) commonly results in injury to the components of the white matter tracts, causing post-injury cognitive deficits. The myelin-producing oligodendrocytes (OLs) are vulnerable to TBI although may plausibly be replaced by proliferating oligodendrocyte progenitor cells (OPCs). The cytokine interleukin-1β (IL-1β) is a key mediator of the complex inflammatory response, and when neutralized in experimental TBI behavioral outcome was improved. To evaluate the role of IL-1β on OL cell death and OPC proliferation, 116 adult male mice subjected to sham injury or the central fluid percussion injury (cFPI) model of traumatic axonal injury, were analyzed at 2, 7 and 14 days post-injury. At 30 min post-injury, mice were randomly assigned to receiving an IL-1β neutralizing or a control antibody. OPC proliferation (5-ethynyl 2´- deoxyuridine (EdU)/Olig2 co-labeling) and mature OL cell loss was evaluated in injured white matter tracts. Microglia immunohistochemistry and ramification using Sholl analysis was also evaluated. Neutralizing IL-1β resulted in attenuated cell death, indicated by cleaved caspase-3 expression, and reduced loss of mature OLs from 2-7 days post-injury in brain-injured animals. IL-1β neutralization also attenuated the early, 2 day post-injury, increase of microglial immunoreactivity and the change in their ramification. However, the proliferation of OPCs in brain-injured animals was not altered. Our data suggest that IL-1β is involved in the TBI-induced loss of OLs and early microglial activation, although not the OPC proliferation. Attenuated oligodendrocyte cell loss may contribute to the improved behavioral outcome observed by IL-1β neutralization in this mouse model of diffuse TBI.
Brain Sci
2020 Apr 10
Losurdo M, Davidsson J, Sk�ld MK
PMID: 32290212 | DOI: 10.3390/brainsci10040229
Stem cell reports
2021 Jun 30
Watson, AES;de Almeida, MMA;Dittmann, NL;Li, Y;Torabi, P;Footz, T;Vetere, G;Galleguillos, D;Sipione, S;Cardona, AE;Voronova, A;
PMID: 34270934 | DOI: 10.1016/j.stemcr.2021.06.010
Acta neuropathologica communications
2022 Jan 29
Singh, AK;Mahalingam, R;Squillace, S;Jacobson, KA;Tosh, DK;Dharmaraj, S;Farr, SA;Kavelaars, A;Salvemini, D;Heijnen, CJ;
PMID: 35093182 | DOI: 10.1186/s40478-022-01315-w
Neuron
2022 Sep 26
Bulstrode, H;Girdler, GC;Gracia, T;Aivazidis, A;Moutsopoulos, I;Young, AMH;Hancock, J;He, X;Ridley, K;Xu, Z;Stockley, JH;Finlay, J;Hallou, C;Fajardo, T;Fountain, DM;van Dongen, S;Joannides, A;Morris, R;Mair, R;Watts, C;Santarius, T;Price, SJ;Hutchinson, PJA;Hodson, EJ;Pollard, SM;Mohorianu, I;Barker, RA;Sweeney, TR;Bayraktar, O;Gergely, F;Rowitch, DH;
PMID: 36174572 | DOI: 10.1016/j.neuron.2022.09.002
Cell
2018 Nov 29
Sun LO, Mulinyawe SB, Collins HY, Ibrahim A, Li Q, Simon DJ, Tessier-Lavigne M, Barres BA.
PMID: - | DOI: 10.1016/j.cell.2018.10.044
Nervous system function depends on proper myelination for insulation and critical trophic support for axons. Myelination is tightly regulated spatially and temporally, but how it is controlled molecularly remains largely unknown. Here, we identified key molecular mechanisms governing the regional and temporal specificity of CNS myelination. We show that transcription factor EB (TFEB) is highly expressed by differentiating oligodendrocytes and that its loss causes precocious and ectopic myelination in many parts of the murine brain. TFEB functions cell-autonomously through PUMA induction and Bax-Bak activation to promote programmed cell death of a subset of premyelinating oligodendrocytes, allowing selective elimination of oligodendrocytes in normally unmyelinated brain regions. This pathway is conserved across diverse brain areas and is critical for myelination timing. Our findings define an oligodendrocyte-intrinsic mechanism underlying the spatiotemporal specificity of CNS myelination, shedding light on how myelinating glia sculpt the nervous system during development.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com