ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
2021 Apr 16
Venkataraman, A;Hunter, SC;Dhinojwala, M;Ghebrezadik, D;Guo, J;Inoue, K;Young, LJ;Dias, BG;
PMID: 33864008 | DOI: 10.1038/s41386-021-01006-5
Front Cell Neurosci. 2018 Oct 9;12:341.
2018 Oct 09
Yoo T, Cho H, Lee J, Park H, Yoo YE, Yang E, Kim JY, Kim H, Kim E.
PMID: 30356810 | DOI: 10.3389/fncel.2018.00341
ILAR J.
2018 Nov 21
Himmel LE, Hackett TA, Moore JL, Adams WR, Thomas G, Novitskaya T, Caprioli RM, Zijlstra A, Mahadevan-Jansen A, Boyd KL.
PMID: 30462242 | DOI: 10.1093/ilar/ily004
For decades, histopathology with routine hematoxylin and eosin staining has been and remains the gold standard for reaching a morphologic diagnosis in tissue samples from humans and veterinary species. However, within the past decade, there has been exponential growth in advanced techniques for in situ tissue biomarker imaging that bridge the divide between anatomic and molecular pathology. It is now possible to simultaneously observe localization and expression magnitude of multiple protein, nucleic acid, and molecular targets in tissue sections and apply machine learning to synthesize vast, image-derived datasets. As these technologies become more sophisticated and widely available, a team-science approach involving subspecialists with medical, engineering, and physics backgrounds is critical to upholding quality and validity in studies generating these data. The purpose of this manuscript is to detail the scientific premise, tools and training, quality control, and data collection and analysis considerations needed for the most prominent advanced imaging technologies currently applied in tissue sections: immunofluorescence, in situ hybridization, laser capture microdissection, matrix-assisted laser desorption ionization imaging mass spectrometry, and spectroscopic/optical methods. We conclude with a brief overview of future directions for ex vivo and in vivo imaging techniques.
Communications biology
2022 Aug 18
Noh, YW;Yook, C;Kang, J;Lee, S;Kim, Y;Yang, E;Kim, H;Kim, E;
PMID: 35982261 | DOI: 10.1038/s42003-022-03813-y
Molecular therapy : the journal of the American Society of Gene Therapy
2022 May 05
Tadokoro, T;Bravo-Hernandez, M;Agashkov, K;Kobayashi, Y;Platoshyn, O;Navarro, M;Marsala, S;Miyanohara, A;Yoshizumi, T;Shigyo, M;Krotov, V;Juhas, S;Juhasova, J;Nguyen, D;Kupcova Skalnikova, H;Motlik, J;Studenovska, H;Proks, V;Reddy, R;Driscoll, SP;Glenn, TD;Kemthong, T;Malaivijitnond, S;Tomori, Z;Vanicky, I;Kakinohana, M;Pfaff, SL;Ciacci, J;Belan, P;Marsala, M;
PMID: 35524407 | DOI: 10.1016/j.ymthe.2022.04.023
Cancer Res.
2018 Sep 19
van Lidth de Jeude JF, Spaan CN, Meijer BJ, Smit WL, Soeratram TTD, Wielenga MCB, Westendorp BF, Lee AS, Meisner S, Vermeulen JLM, Wildenberg ME, van den Brink GR, Muncan V, Heijmans J.
PMID: 30232220 | DOI: 10.1158/0008-5472.CAN-17-3600
Deletion of endoplasmic reticulum (ER) resident chaperone Grp78 results in activation of the unfolded protein response and causes rapid depletion of the entire intestinal epithelium. Whether modest reduction of Grp78 may affect stem cell fate without compromising intestinal integrity remains unknown. Here we employ a model of epithelial-specific, heterozygous Grp78 deletion by use of VillinCreERT2-Rosa26ZsGreen/LacZ-Grp78+/fl mice and organoids. We examine models of irradiation and tumorigenesis both in vitro and in vivo. Although we observed no phenotypic changes in Grp78 heterozygous mice, Grp78 heterozygous organoid growth was markedly reduced. Irradiation of Grp78 heterozygous mice resulted in less frequent regeneration of crypts compared to non-recombined (wild-type) mice, exposing reduced capacity for self-renewal upon genotoxic insult. We crossed mice to Apc mutant animals for adenoma studies and found that adenomagenesis in Apc heterozygous-Grp78 heterozygous mice was reduced compared to Apc heterozygous controls (1.43 vs. 3.33; P < 0.01). In conclusion, epithelium specific Grp78 heterozygosity compromises epithelial fitness under conditions requiring expansive growth such as adenomagenesis or regeneration after γ-irradiation. These results suggest that Grp78 may be a therapeutic target in prevention of intestinal neoplasms without affecting normal tissue.
Experimental neurology
2021 Nov 24
Sartori, AM;Hofer, AS;Scheuber, MI;Rust, R;Kessler, TM;Schwab, ME;
PMID: 34826427 | DOI: 10.1016/j.expneurol.2021.113937
Biological psychiatry
2023 May 26
Leithead, AB;Godino, A;Barbier, M;Harony-Nicolas, H;
PMID: 37245781 | DOI: 10.1016/j.biopsych.2023.05.016
Proc Natl Acad Sci U S A.
2018 Apr 23
Meng D, Li HQ, Deisseroth K, Leutgeb S, Spitzer NC.
PMID: 29686073 | DOI: 10.1073/pnas.1801598115
Neurotransmitter switching in the adult mammalian brain occurs following photoperiod-induced stress, but the mechanism of regulation is unknown. Here, we demonstrate that elevated activity of dopaminergic neurons in the paraventricular nucleus of the hypothalamus (PaVN) in the adult rat is required for the loss of dopamine expression after long-day photoperiod exposure. The transmitter switch occurs exclusively in PaVN dopaminergic neurons that coexpress vesicular glutamate transporter 2 (VGLUT2), is accompanied by a loss of dopamine type 2 receptors (D2Rs) on corticotrophin-releasing factor (CRF) neurons, and can lead to increased release of CRF. Suppressing activity of all PaVN glutamatergic neurons decreases the number of inhibitory PaVN dopaminergic neurons, indicating homeostatic regulation of transmitter expression in the PaVN.
The Journal of neuroscience : the official journal of the Society for Neuroscience
2022 Oct 24
Fudge, JL;Kelly, EA;Hackett, TA;
PMID: 36280261 | DOI: 10.1523/JNEUROSCI.1453-22.2022
Proc Natl Acad Sci U S A.
2018 Nov 15
Shen H, Marino RAM, McDevitt RA, Bi GH, Chen K, Madeo G, Lee PT, Liang Y, De Biase LM, Su TP, Xi ZX, Bonci A.
PMID: 30442663 | DOI: 10.1073/pnas.1800886115
A subset of midbrain dopamine (DA) neurons express vesicular glutamate transporter 2 (VgluT2), which facilitates synaptic vesicle loading of glutamate. Recent studies indicate that such expression can modulate DA-dependent reward behaviors, but little is known about functional consequences of DA neuron VgluT2 expression in neurodegenerative diseases like Parkinson's disease (PD). Here, we report that selective deletion of VgluT2 in DA neurons in conditional VgluT2-KO (VgluT2-cKO) mice abolished glutamate release from DA neurons, reduced their expression of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB), and exacerbated the pathological effects of exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, viral rescue of VgluT2 expression in DA neurons of VglutT2-cKO mice restored BDNF/TrkB expression and attenuated MPTP-induced DA neuron loss and locomotor impairment. Together, these findings indicate that VgluT2 expression in DA neurons is neuroprotective. Genetic or environmental factors causing reduced expression or function of VgluT2 in DA neurons may place some individuals at increased risk for DA neuron degeneration. Therefore, maintaining physiological expression and function of VgluT2 in DA neurons may represent a valid molecular target for the development of preventive therapeutic interventions for PD.
Nat Commun.
2018 Aug 02
Jung KB, Lee H, Son YS, Lee MO, Kim YD, Oh SJ, Kwon O, Cho S, Cho HS, Kim DS, Oh JH, Zilbauer M, Min JK, Jung CR, Kim J, Son MY.
PMID: 30072687 | DOI: 10.1038/s41467-018-05450-8
Human pluripotent stem cell (hPSC)-derived intestinal organoids (hIOs) form 3D structures organized into crypt and villus domains, making them an excellent in vitro model system for studying human intestinal development and disease. However, hPSC-derived hIOs still require in vivo maturation to fully recapitulate adult intestine, with the mechanism of maturation remaining elusive. Here, we show that the co-culture with human T lymphocytes induce the in vitro maturation of hIOs, and identify STAT3-activating interleukin-2 (IL-2) as the major factor inducing maturation. hIOs exposed to IL-2 closely mimic the adult intestinal epithelium and have comparable expression levels of mature intestinal markers, as well as increased intestine-specific functional activities. Even after in vivo engraftment, in vitro-matured hIOs retain their maturation status. The results of our study demonstrate that STAT3 signaling can induce the maturation of hIOs in vitro, thereby circumventing the need for animal models and in vivo maturation.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com