The American Journal of Pathology
Ha Y, Liu H, Zhu S, Yi P, Liu W, Nathanson J, Kayed R, Loucas B, Sun J, Frishman LJ, Motamedi M, Zhang W.
PMID: 27960090 | DOI: 10.1016/j.ajpath.2016.10.009
Traumatic optic neuropathy (TON) is an acute injury of the optic nerve secondary to trauma. Loss of retinal ganglion cells (RGCs) is a key pathological process in TON, yet mechanisms responsible for RGC death remain unclear. In a mouse model of TON, real-time noninvasive imaging revealed a dramatic increase in leukocyte rolling and adhesion in veins near the optic nerve (ON) head at 9 hours after ON injury. Although RGC dysfunction and loss were not detected at 24 hours after injury, massive leukocyte infiltration was observed in the superficial retina. These cells were identified as T cells, microglia/monocytes, and neutrophils but not B cells. CXCL10 is a chemokine that recruits leukocytes after binding to its receptor C-X-C chemokine receptor (CXCR) 3. The levels of CXCL10 and CXCR3 were markedly elevated in TON, and up-regulation of CXCL10 was mediated by STAT1/3. Deleting CXCR3 in leukocytes significantly reduced leukocyte recruitment, and prevented RGC death at 7 days after ON injury. Treatment with CXCR3 antagonist attenuated TON-induced RGC dysfunction and cell loss. In vitro co-culture of primary RGCs with leukocytes resulted in increased RGC apoptosis, which was exaggerated in the presence of CXCL10. These results indicate that leukocyte recruitment in retinal vessels near the ON head is an early event in TON and the CXCL10/CXCR3 axis has a critical role in recruiting leukocytes and inducing RGC death.
Journal for immunotherapy of cancer
Reschke, R;Yu, J;Flood, B;Higgs, EF;Hatogai, K;Gajewski, TF;
PMID: 34593622 | DOI: 10.1136/jitc-2021-003521
A T cell-inflamed tumor microenvironment is characterized by the accumulation and local activation of CD8+ T cells and Bat3-lineage dendritic cells, which together are associated with clinical response to anti-programmed cell death protein 1 (anti-PD-1)-based immunotherapy. Preclinical models have demonstrated a crucial role for the chemokine CXCL10 in the recruitment of effector CD8+ T cells into the tumor site, and a chemokine gene signature is also seen in T cell-inflamed tumors from patients. However, the cellular source of CXCL10 in human solid tumors is not known. To identify the cellular source of CXCL10 we analyzed 22 pretreatment biopsy samples of melanoma metastases from patients who subsequently underwent checkpoint blockade immunotherapy. We stained for CD45+ and Sox10+ cells with multiparameter immunofluorescence staining, and RNA in situ hybridization technology was used in concert to identify CXCL10 transcripts. The results were correlated with the expression levels of CXCL10 transcripts from bulk RNA sequencing and the best overall response to immune checkpoint inhibition (anti-PD-1 alone or with anti-CTLA-4) in the same patients. We identified CD45+ cells as the major cellular source for CXCL10 in human melanoma metastases, with additional CXCL10 production seen by Sox10+ cells. Up to 90% of CD45+ cells and up to 69% of Sox10+ cells produced CXCL10 transcripts. The CXCL10 staining result was consistent with the level of CXCL10 expression determined by bulk RNA sequencing. The percentages of CD45+ CXCL10+ cells and Sox10+ CXCL10+ cells independently predicted response (p<0.001). The average number of transcripts per cell correlated with the CD45+ cell infiltrate (R=0.37). Immune cells and melanoma cells produce CXCL10 in human melanoma metastases. Intratumoral CXCL10 is a positive prognostic factor for response to immunotherapy, and the RNAscope technique is achievable using paraffin tissue. Strategies that support effector T cell recruitment via induction of CXCL10 should be considered as a mechanism-based intervention to expand immunotherapy efficacy.
Ouwendijk WJ, Getu S, Mahalingam R, Gilden D, Osterhaus AD, Verjans GM.
PMID: 26676825 | DOI: -
Primary simian varicella virus (SVV) infection in non-human primates causes varicella, after which the virus becomes latent in ganglionic neurons and reactivates to cause zoster. The host response in ganglia during establishment of latency is ill-defined. Ganglia from five African green monkeys (AGMs) obtained at 9, 13, and 20 days post-intratracheal SVV inoculation (dpi) were analyzed by ex vivo flow cytometry, immunohistochemistry, and in situ hybridization. Ganglia at 13 and 20 dpi exhibited mild inflammation. Immune infiltrates consisted mostly of CD8dim and CD8bright memory T cells, some of which expressed granzyme B, and fewer CD11c+ and CD68+ cells. Chemoattractant CXCL10 transcripts were expressed in neurons and infiltrating inflammatory cells but did not co-localize with SVV open reading frame 63 (ORF63) RNA expression. Satellite glial cells expressed increased levels of activation markers CD68 and MHC class II at 13 and 20 dpi compared to those at 9 dpi. Overall, local immune responses emerged as viral DNA load in ganglia declined, suggesting that intra-ganglionic immunity contributes to restricting SVV replication.
Hoch, T;Schulz, D;Eling, N;Gómez, JM;Levesque, MP;Bodenmiller, B;
PMID: 35363540 | DOI: 10.1126/sciimmunol.abk1692
Intratumoral immune cells are crucial for tumor control and antitumor responses during immunotherapy. Immune cell trafficking into tumors is mediated by binding of specific immune cell receptors to chemokines, a class of secreted chemotactic cytokines. To broadly characterize chemokine expression and function in melanoma, we used multiplexed mass cytometry-based imaging of protein markers and RNA transcripts to analyze the chemokine landscape and immune infiltration in metastatic melanoma samples. Tumors that lacked immune infiltration were devoid of most of the profiled chemokines and exhibited low levels of antigen presentation and markers of inflammation. Infiltrated tumors were characterized by expression of multiple chemokines. CXCL9 and CXCL10 were often localized in patches associated with dysfunctional T cells expressing the B lymphocyte chemoattractant CXCL13. In tumors with B cells but no B cell follicles, T cells were the sole source of CXCL13, suggesting that T cells play a role in B cell recruitment and potentially in B cell follicle formation. B cell patches and follicles were also enriched with TCF7+ naïve-like T cells, a cell type that is predictive of response to immune checkpoint blockade. Our data highlight the strength of targeted RNA and protein codetection to analyze tumor immune microenvironments based on chemokine expression and suggest that the formation of tertiary lymphoid structures may be accompanied by naïve and naïve-like T cell recruitment, which may contribute to antitumor activity.
Fish KN, Rocco BR, Lewis DA.
PMID: 29503610 | DOI: 10.3389/fnana.2018.00009
In human prefrontal cortex (PFC), ~85% of γ-aminobutyric acid (GABA)-expressing neurons can be subdivided into non-overlapping groups by the presence of calbindin (CB), calretinin (CR) or parvalbumin (PV). Substantial research has focused on the differences in the laminar locations of the cells bodies of these neurons, with limited attention to the distribution of their axon terminals, their sites of action. We previously reported that in non-human primates subtypes of these cells are distinguishable by differences in terminal protein levels of the GABA synthesizing enzymes glutamic acid decarboxylase 65 (GAD65) and GAD67. Here we used multi-label fluorescence microscopy in human PFC to assess: (1) the laminar distributions of axon terminals containing CB, CR, or PV; and (2) the relative protein levels of GAD65, GAD67 and vesicular GABA transporter (vGAT) in CB, CR and PV terminals. The densities of the different CB, CR and PV terminal subpopulations differed across layers of the PFC. PV terminals comprised two subsets based on the presence of only GAD67 (GAD67+) or both GADs (GAD65/GAD67+), whereas CB and CR terminals comprised three subsets (GAD65+, GAD67+, or GAD65/GAD67+). The densities of the different CB, CR and PV GAD terminal subpopulations also differed across layers. Finally, within each of the three calcium-binding protein subpopulations intra-terminal protein levels of GAD and vGAT differed by GAD subpopulation. These findings are discussed in the context of the laminar distributions of CB, CR and PV cell bodies and the synaptic targets of their axons.
March-Riera, S;Wilson, AA;Bhatia, SN;Muhlberger, E;
| DOI: 10.1016/j.stemcr.2022.08.003
Liver damage and an exacerbated inflammatory response are hallmarks of Ebola virus (EBOV) infection. Little is known about the intrinsic response to infection in human hepatocytes and their contribution to inflammation. Here, we present an induced pluripotent stem cell (iPSC)-derived hepatocyte-like cell (HLC) platform to define the hepato-intrinsic response to EBOV infection. We used this platform to show robust EBOV infection, with characteristic ultrastructural changes and evidence for viral replication. Transcriptomics analysis revealed a delayed response with minimal early transcriptomic changes, followed by a general downregulation of hepatic function and upregulation of interferon signaling, providing a potential mechanism by which hepatocytes participate in disease severity and liver damage. Using RNA-fluorescence in situ hybridization (FISH), we showed that IFNB1 and CXCL10 were mainly expressed in non-infected bystander cells. We did not observe an inflammatory signature during infection. In conclusion, iPSC-HLCs are an immune competent platform to study responses to EBOV infection.
J Comp Pathol. 2015 Jul 16.
Palmer MV, Thacker TC, Waters WR.
PMID: 26189773 | DOI: 10.1016/j.jcpa.2015.06.004.
Mycobacterium bovis is the cause of tuberculosis in most animal species including cattle and is a serious zoonotic pathogen. In man, M. bovis infection can result in disease clinically indistinguishable from that caused by Mycobacterium tuberculosis, the cause of most human tuberculosis. Regardless of host, the typical lesion induced by M. bovis or M. tuberculosis is the tuberculoid granuloma. Tuberculoid granulomas are dynamic structures reflecting the interface between host and pathogen and, therefore, pass through various morphological stages (I to IV). Using a novel in-situ hybridization assay, transcription of various cytokine and chemokine genes was examined qualitatively and quantitatively using image analysis. In experimentally infected cattle, pulmonary granulomas of all stages were examined 150 days after aerosol exposure to M. bovis. Expression of mRNA encoding tumour necrosis factor (TNF)-α, transforming growth factor-β, interferon (IFN)-γ, interleukin (IL)-17A, IL-16, IL-10, CXCL9 and CXCL10 did not differ significantly between granulomas of different stages. However, relative expression of the various cytokines was characteristic of a Th1 response, with high TNF-α and IFN-γ expression and low IL-10 expression. Expression of IL-16 and the chemokines CXCL9 and CXCL10 was high, suggestive of granulomas actively involved in T-cell chemotaxis.
Schulz D, Zanotelli VRT, Fischer JR, Schapiro D, Engler S, Lun XK, Jackson HW, Bodenmiller B.
PMID: 29289569 | DOI: 10.1016/j.cels.2017.12.001
To build comprehensive models of cellular states and interactions in normal and diseased tissue, genetic and proteomic information must be extracted with single-cell and spatial resolution. Here, we extended imaging mass cytometry to enable multiplexed detection of mRNA and proteins in tissues. Three mRNA target species were detected by RNAscope-based metal in situ hybridization with simultaneous antibody detection of 16 proteins. Analysis of 70 breast cancer samples showed that HER2 and CK19 mRNA and protein levels are moderately correlated on the single-cell level, but that only HER2, and not CK19, has strong mRNA-to-protein correlation on the cell population level. The chemoattractant CXCL10 was expressed in stromal cell clusters, and the frequency of CXCL10-expressing cells correlated with T cell presence. Our flexible and expandable method will allow an increase in the information content retrieved from patient samples for biomedical purposes, enable detailed studies of tumor biology, and serve as a tool to bridge comprehensive genomic and proteomic tissue analysis.
Jung, M;Dourado, M;Maksymetz, J;Jacobson, A;Laufer, BI;Baca, M;Foreman, O;Hackos, DH;Riol-Blanco, L;Kaminker, JS;
PMID: 36690629 | DOI: 10.1038/s41467-023-36014-0
Sensory neurons of the dorsal root ganglion (DRG) are critical for maintaining tissue homeostasis by sensing and initiating responses to stimuli. While most preclinical studies of DRGs are conducted in rodents, much less is known about the mechanisms of sensory perception in primates. We generated a transcriptome atlas of mouse, guinea pig, cynomolgus monkey, and human DRGs by implementing a common laboratory workflow and multiple data-integration approaches to generate high-resolution cross-species mappings of sensory neuron subtypes. Using our atlas, we identified conserved core modules highlighting subtype-specific biological processes related to inflammatory response. We also identified divergent expression of key genes involved in DRG function, suggesting species-specific adaptations specifically in nociceptors that likely point to divergent function of nociceptors. Among these, we validated that TAFA4, a member of the druggable genome, was expressed in distinct populations of DRG neurons across species, highlighting species-specific programs that are critical for therapeutic development.
Fgf15 neurons of the dorsomedial hypothalamus control glucagon secretion and hepatic gluconeogenesis
Picard, A;Metref, S;Tarussio, D;Dolci, W;Berney, X;Croizier, S;Labouebe, G;Thorens, B;
PMID: 33883213 | DOI: 10.2337/db20-1121
The counterregulatory response to hypoglycemia is an essential survival function. It is controlled by an integrated network of glucose responsive neurons, which trigger endogenous glucose production to restore normoglycemia. The complexity of this gluco-regulatory network is, however, only partly characterized. In a genetic screen of a panel of recombinant inbred mice we previously identified Fgf15, expressed in neurons of the dorsomedial hypothalamus, as a negative regulator of glucagon secretion. Here, we report on the generation of Fgf15CretdTomato mice and their use to further characterize these neurons. We showed that they were glutamatergic and comprised glucose inhibited and glucose excited neurons. When activated by chemogenetics, Fgf15 neurons prevented the increase in vagal nerve firing and the secretion of glucagon normally triggered by insulin-induced hypoglycemia. On the other hand, they increased the activity of the sympathetic nerve in the basal state and prevented its silencing by glucose overload. Higher sympathetic tone increased hepatic Creb1 phosphorylation, Pck1 mRNA expression, and hepatic glucose production leading to glucose intolerance. Thus, Fgf15 neurons of the dorsomedial hypothalamus participate in the counterregulatory response to hypoglycemia by a direct adrenergic stimulation of hepatic glucose production while suppressing vagally-induced glucagon secretion. This study provides new insights into the complex neuronal network that prevents the development of hypoglycemia.
Golden, JW;Li, R;Cline, CR;Zeng, X;Mucker, EM;Fuentes-Lao, AJ;Spik, KW;Williams, JA;Twenhafel, N;Davis, N;Moore, JL;Stevens, S;Blue, E;Garrison, AR;Larson, DD;Stewart, R;Kunzler, M;Liu, Y;Wang, Z;Hooper, JW;
PMID: 35073750 | DOI: 10.1128/mbio.02906-21
The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a global health emergency. While most human disease is mild to moderate, some infections lead to a severe disease characterized by acute respiratory distress, hypoxia, anosmia, ageusia, and, in some instances, neurological involvement. Small-animal models reproducing severe disease, including neurological sequela, are needed to characterize the pathophysiological mechanism(s) of disease and to identify medical countermeasures. Transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the K18 promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge when high viral doses are used. Here, we report on SARS-CoV-2 infection of hamsters engineered to express the hACE2 receptor under the control of the K18 promoter. K18-hACE2 hamsters infected with a relatively low dose of 100 or 1,000 PFU of SARS-CoV-2 developed a severe and lethal disease, with most animals succumbing by day 5 postinfection. Hamsters developed severe lesions and inflammation within the upper and lower respiratory system, including infection of the nasal cavities causing marked destruction of the olfactory epithelium as well as severe bronchopneumonia that extended deep into the alveoli. Additionally, SARS-CoV-2 infection spread to the central nervous system (CNS), including the brain stem and spinal cord. Wild-type (WT) hamsters naturally support SARS-CoV-2 infection, with the primary lesions present in the respiratory tract and nasal cavity. Overall, infection in the K18-hACE2 hamsters is more extensive than that in WT hamsters, with more CNS involvement and a lethal outcome. These findings demonstrate the K18-hACE2 hamster model will be valuable for studying SARS-CoV-2. IMPORTANCE The rapid emergence of SARS-CoV-2 has created a global health emergency. While most human SARS-CoV-2 disease is mild, some people develop severe, life-threatening disease. Small-animal models mimicking the severe aspects of human disease are needed to more clearly understand the pathophysiological processes driving this progression. Here, we studied SARS-CoV-2 infection in hamsters engineered to express the human angiotensin-converting enzyme 2 viral receptor under the control of the K18 promoter. SARS-CoV-2 produces a severe and lethal infection in transgenic hamsters that mirrors the most severe aspects of COVID-19 in humans, including respiratory and neurological injury. In contrast to other animal systems, hamsters manifest disease with levels of input virus more consistent with natural human infection. This system will be useful for the study of SARS-CoV-2 disease and the development of drugs targeting this virus.
Postnatal Sox6 regulates synaptic function of cortical parvalbumin-expressing neurons
The Journal of neuroscience : the official journal of the Society for Neuroscience
Munguba, H;Chattopadhyaya, B;Nilsson, S;Carriço, JN;Memic, F;Oberst, P;Batista-Brito, R;Munoz-Manchado, AB;Wegner, M;Fishell, G;Di Cristo, G;Hjerling-Leffler, J;
PMID: 34503995 | DOI: 10.1523/JNEUROSCI.0021-21.2021
Cortical parvalbumin (Pvalb)-expressing neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. This class of inhibitory neurons undergoes extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. While several transcription factors, such as Nkx2-1, Lhx6, and Sox6, are known to be necessary for the differentiation of progenitors into Pvalb+ neurons, which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons' innervation and synaptic function remains largely unknown. Because Sox6 is continuously expressed in Pvalb+ neurons until adulthood, we utilized conditional knockout strategies to investigate its putative role in the postnatal maturation and synaptic function of cortical Pvalb+ neurons in mice of both sexes. We found that early postnatal loss of Sox6 in Pvalb+ neurons leads to failure of synaptic bouton growth, whereas later removal in mature Pvalb+ neurons in the adult causes shrinkage of already established synaptic boutons. Paired recordings between Pvalb+ neurons and pyramidal neurons revealed reduced release probability and increased failure rate of Pvalb+ neurons' synaptic output. Furthermore, Pvalb+ neurons lacking Sox6 display reduced expression of full-length tropomyosin-receptor kinase B (TrkB), a key modulator of GABAergic transmission. Once re-expressed in neurons lacking Sox6, TrkB was sufficient to rescue the morphological synaptic phenotype. Finally, we showed that Sox6 mRNA levels were increased by motor training. Our data thus suggest a constitutive role for Sox6 in the maintenance of synaptic output from Pvalb+ neurons into adulthood.Significance statement:Cortical parvalbumin-expressing (Pvalb+) inhibitory neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. These inhibitory neurons undergo extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. However, it remains largely unknown which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons. Here we show that the transcription factor Sox6 cell-autonomously regulates the synaptic maintenance and output of Pvalb+ neurons until adulthood, leaving unaffected other maturational features of this neuronal population.