Matsuo, J;Mon, N;Douchi, D;Yamamura, A;Kulkarni, M;Heng, D;Chen, S;Nuttonmanit, N;Li, Y;Yang, H;Lee, M;Tam, W;Osato, M;Chuang, L;Ito, Y;
| DOI: 10.1093/stmcls/sxab009
Mammary gland homeostasis is maintained by adult tissue stem-progenitor cells residing within the luminal and basal epithelia. Dysregulation of mammary stem cells is a key mechanism for cancer development. However, stem cell characterization is challenging because reporter models using cell-specific promoters do not fully recapitulate the mammary stem cell populations. We previously found that a 270-basepair Runx1 enhancer element, named eR1, marked stem cells in the blood and stomach. Here, we identified eR1 activity in a rare subpopulation of the ERα-negative luminal epithelium in mouse mammary glands. Lineage-tracing using an eR1-CreERT2 mouse model revealed that eR1+ luminal cells generated the entire luminal lineage and milk-secreting alveoli - eR1 therefore specifically marks lineage-restricted luminal stem cells. eR1-targeted-conditional knockout of Runx1 led to the expansion of luminal epithelial cells, accompanied by elevated ERα expression. Our findings demonstrate a definitive role for Runx1 in the regulation of the eR1-positive luminal stem cell proliferation during mammary homeostasis. Our findings identify a mechanistic link for Runx1 in stem cell proliferation and its dysregulation in breast cancer. Runx1 inactivation is therefore likely to be an early hit in the cell-of-origin of ERα+ luminal type breast cancer.
Garcia-Alonso, L;Lorenzi, V;Mazzeo, CI;Alves-Lopes, JP;Roberts, K;Sancho-Serra, C;Engelbert, J;Marečková, M;Gruhn, WH;Botting, RA;Li, T;Crespo, B;van Dongen, S;Kiselev, VY;Prigmore, E;Herbert, M;Moffett, A;Chédotal, A;Bayraktar, OA;Surani, A;Haniffa, M;Vento-Tormo, R;
PMID: 35794482 | DOI: 10.1038/s41586-022-04918-4
Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.
Muhl, L;Mocci, G;Pietilä, R;Liu, J;He, L;Genové, G;Leptidis, S;Gustafsson, S;Buyandelger, B;Raschperger, E;Hansson, EM;Björkegren, JLM;Vanlandewijck, M;Lendahl, U;Betsholtz, C;
PMID: 36283392 | DOI: 10.1016/j.devcel.2022.09.015
Smooth muscle cells (SMCs) execute important physiological functions in numerous vital organ systems, including the vascular, gastrointestinal, respiratory, and urogenital tracts. SMC differ morphologically and functionally at these different anatomical locations, but the molecular underpinnings of the differences remain poorly understood. Here, using deep single-cell RNA sequencing combined with in situ gene and protein expression analysis in four murine organs-heart, aorta, lung, and colon-we identify a molecular basis for high-level differences among vascular, visceral, and airway SMC, as well as more subtle differences between, for example, SMC in elastic and muscular arteries and zonation of elastic artery SMC along the direction of blood flow. Arterial SMC exhibit extensive organotypic heterogeneity, whereas venous SMC are similar across organs. We further identify a specific SMC subtype within the pulmonary vasculature. This comparative SMC cross-organ resource offers insight into SMC subtypes and their specific functions.
Goodwin, K;Lemma, B;Zhang, P;Boukind, A;Nelson, CM;
PMID: 36868232 | DOI: 10.1016/j.devcel.2023.02.002
It has been proposed that smooth muscle differentiation may physically sculpt airway epithelial branches in mammalian lungs. Serum response factor (SRF) acts with its co-factor myocardin to activate the expression of contractile smooth muscle markers. In the adult, however, smooth muscle exhibits a variety of phenotypes beyond contractile, and these are independent of SRF/myocardin-induced transcription. To determine whether a similar phenotypic plasticity is exhibited during development, we deleted Srf from the mouse embryonic pulmonary mesenchyme. Srf-mutant lungs branch normally, and the mesenchyme displays mechanical properties indistinguishable from controls. scRNA-seq identified an Srf-null smooth muscle cluster, wrapping the airways of mutant lungs, which lacks contractile smooth muscle markers but retains many features of control smooth muscle. Srf-null embryonic airway smooth muscle exhibits a synthetic phenotype, compared with the contractile phenotype of mature wild-type airway smooth muscle. Our findings identify plasticity in embryonic airway smooth muscle and demonstrate that a synthetic smooth muscle layer promotes airway branching morphogenesis.
Angelozzi, M;Pellegrino da Silva, R;Gonzalez, MV;Lefebvre, V;
PMID: 35830813 | DOI: 10.1016/j.celrep.2022.111045
The mammalian skull vault is essential to shape the head and protect the brain, but the cellular and molecular events underlying its development remain incompletely understood. Single-cell transcriptomic profiling from early to late mouse embryonic stages provides a detailed atlas of cranial lineages. It distinguishes various populations of progenitors and reveals a high expression of SOXC genes (encoding the SOX4, SOX11, and SOX12 transcription factors) early in development in actively proliferating and myofibroblast-like osteodermal progenitors. SOXC inactivation in these cells causes severe skull and skin underdevelopment due to the limited expansion of cell populations before and upon lineage commitment. SOXC genes enhance the expression of gene signatures conferring dynamic cellular and molecular properties, including actin cytoskeleton assembly, chromatin remodeling, and signaling pathway induction and responsiveness. These findings shed light onto craniogenic mechanisms and SOXC functions and suggest that similar mechanisms could decisively control many developmental, adult, pathological, and regenerative processes.
Unveiling Complexity and Multipotentiality of Early Heart Fields
Zhang, Q;Carlin, D;Zhu, F;Cattaneo, P;Ideker, T;Evans, SM;Bloomekatz, J;Chi, NC;
PMID: 34162224 | DOI: 10.1161/CIRCRESAHA.121.318943
Rationale: Extraembryonic tissues, including the yolk sac and placenta, and the heart within the embryo, work to provide crucial nutrients to the embryo. The association of congenital heart defects (CHDs) with extraembryonic tissue defects further supports the potential developmental relationship between the heart and extraembryonic tissues. Although the development of early cardiac lineages has been well-studied, the developmental relationship between cardiac lineages, including epicardium, and extraembryonic mesoderm remains to be defined. Objective: To explore the developmental relationships between cardiac and extraembryonic lineages. Methods and Results: Through high-resolution single cell and genetic lineage/clonal analyses, we show an unsuspected clonal relationship between extraembryonic mesoderm and cardiac lineages. Single-cell transcriptomics and trajectory analyses uncovered two mesodermal progenitor sources contributing to left ventricle cardiomyocytes, one embryonic and the other with an extraembryonic gene expression signature. Additional lineage-tracing studies revealed that the extraembryonic-related progenitors reside at the embryonic-extraembryonic interface in gastrulating embryos, and produce distinct cell types forming the pericardium, septum transversum, epicardium, dorsolateral regions of the left ventricle and atrioventricular canal myocardium, and extraembryonic mesoderm. Clonal analyses demonstrated that these progenitors are multipotent, giving rise to not only cardiomyocytes and serosal mesothelial cell types but also, remarkably, extraembryonic mesoderm. Conclusions: Overall, our results reveal the location of previously unknown multipotent cardiovascular progenitors at the embryonic-extraembryonic interface, and define the earliest embryonic origins of serosal mesothelial lineages, including the epicardium, which contributes fibroblasts and vascular support cells to the heart. The shared lineage relationship between embryonic cardiovascular lineages and extraembryonic mesoderm revealed by our studies underscores an underappreciated blurring of boundaries between embryonic and extraembryonic mesoderm. Our findings suggest unexpected underpinnings of the association between congenital heart disease and placental insufficiency anomalies, and the potential utility of extraembryonic cells for generating cardiovascular cell types for heart repair.
Fabian, P;Tseng, KC;Thiruppathy, M;Arata, C;Chen, HJ;Smeeton, J;Nelson, N;Crump, JG;
PMID: 35013168 | DOI: 10.1038/s41467-021-27594-w
The cranial neural crest generates a huge diversity of derivatives, including the bulk of connective and skeletal tissues of the vertebrate head. How neural crest cells acquire such extraordinary lineage potential remains unresolved. By integrating single-cell transcriptome and chromatin accessibility profiles of cranial neural crest-derived cells across the zebrafish lifetime, we observe progressive and region-specific establishment of enhancer accessibility for distinct fates. Neural crest-derived cells rapidly diversify into specialized progenitors, including multipotent skeletal progenitors, stromal cells with a regenerative signature, fibroblasts with a unique metabolic signature linked to skeletal integrity, and gill-specific progenitors generating cell types for respiration. By retrogradely mapping the emergence of lineage-specific chromatin accessibility, we identify a wealth of candidate lineage-priming factors, including a Gata3 regulatory circuit for respiratory cell fates. Rather than multilineage potential being established during cranial neural crest specification, our findings support progressive and region-specific chromatin remodeling underlying acquisition of diverse potential.