ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Molecular metabolism
2022 Jun 09
Zhang, L;Koller, J;Gopalasingam, G;Qi, Y;Herzog, H;
PMID: 35691527 | DOI: 10.1016/j.molmet.2022.101525
Molecular Metabolism
2018 Apr 03
Egerod KL, Petersen N ,Timshel PN, Rekling JC, Wang Y, Liu Q, Schwartz TW, Gautron L.
PMID: - | DOI: 10.1016/j.molmet.2018.03.016
Abstract
Objectives
G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagalafferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract.
Methods
Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situhybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Nav1.8-expressing afferents.
Results
GPCRs for gut hormones that were the most enriched in Nav1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Nav1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Nav1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents.
Conclusion
Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication.
Cell.
2017 Jul 27
Nectow AR, Schneeberger M, Zhang H, Field BC, Renier N, Azevedo E, Patel B, Liang Y, Mitra S, Tessier-Lavigne M, Han MH, Friedman JM.
PMID: 28753423 | DOI: 10.1016/j.cell.2017.06.045
Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.
Diabetes
2022 May 02
Samms, RJ;Cosgrove, R;Snider, BM;Furber, EC;Droz, BA;Briere, DA;Dunbar, J;Dogra, M;Alsina-Fernandez, J;Borner, T;De Jonghe, BC;Hayes, MR;Coskun, T;Sloop, KW;Emmerson, PJ;Ai, M;
PMID: 35499381 | DOI: 10.2337/db21-0848
J Neurosci.
2019 Apr 10
Mackay JP, Bompolaki M, DeJoseph MR, Michaelson SD, Urban JH, Colmers WF.
PMID: 30971438 | DOI: 10.1523/JNEUROSCI.2226-18.2019
Although neuropeptide Y (NPY) has potent anxiolytic actions within the basolateral amygdala (BLA), selective activation of BLA NPY Y2receptors (Y2R) acutely increases anxiety by an unknown mechanism. Using ex vivo male rat brain slice electrophysiology, we show that the selective Y2R agonist, [ahx5-24]NPY, reduced the frequency of GABAA-mediated miniature inhibitory post synaptic currents (mIPSC) in BLA principal neurons (PN). [ahx5-24]NPY also reduced tonic activation of GABAB receptors (GABABR), which increased PN excitability through inhibition of a tonic, inwardly-rectifying potassium current (KIR ). Surprisingly, Y2R-sensitive GABABR currents were action potential-independent, persisting after treatment with tetrodotoxin. Additionally, the Ca2+-dependent, slow afterhyperpolarizing K+ current (IsAHP ) was enhanced in roughly half of the Y2R-sensitive PNs, possibly from enhanced Ca2+ influx, permitted by reduced GABABR tone. In male and female mice expressing tdTomato in Y2R-expressing cells (tdT-Y2R mice), immunohistochemistry revealed that BLA somatostatin interneurons (SST IN) express Y2Rs, as do a significant subset of BLA PNs. In tdT-Y2R mice, [ahx5-24]NPY increased excitability and suppressed the KIR in nearly all BLA PNs independent of tdT-Y2R fluorescence, consistent with presynaptic Y2Rs on SST INs mediating the above effects. However, only tdT-Y2R-expressing PNs responded to [ahx5-24]NPY with an enhancement of the IsAHP Ultimately, increased PN excitability via acute Y2R activation likely correlates with enhanced BLA output, consistent with reported Y2R-mediated anxiogenesis. Furthermore, we demonstrate: 1) a novel mechanism whereby activity-independent GABA release can powerfully dampen BLA neuronal excitability via postsynaptic GABABRs, and 2) that this tonic inhibition can be interrupted by neuromodulation, here by NPY via Y2Rs.SIGNIFICANCE STATEMENTWithin the basolateral amygdala (BLA), neuropeptide Y (NPY) is potently anxiolytic. However, selective activation of NPY2-receptors (Y2R) increases anxiety by an unknown mechanism. We show that activation of BLA Y2Rs decreases tonic GABA release onto BLA principal neurons (PN), probably from Y2R-expressing somatostatin interneurons some of which co-express NPY. This increases PN excitability by reducing GABAB receptor (GABABR)-mediated activation of G-protein-coupled, inwardly-rectifying K+(GIRK) currents. Tonic, Y2R- sensitive GABABR currents unexpectedly persisted in the absence of action potential firing, revealing, to our knowledge, the first report of substantial, activity-independent GABABR activation. Ultimately, we provide a plausible explanation for Y2R-mediated anxiogenesis in vivo and describe a novel and modulatable means of damping neuronal excitability.
Cell reports methods
2022 Oct 24
Ali Marandi Ghoddousi, R;Magalong, VM;Kamitakahara, AK;Levitt, P;
PMID: 36313803 | DOI: 10.1016/j.crmeth.2022.100316
Molecular metabolism
2022 Feb 12
Qi, Y;Lee, NJ;Ip, CK;Enriquez, R;Tasan, R;Zhang, L;Herzog, H;
PMID: 35167990 | DOI: 10.1016/j.molmet.2022.101455
Cell metabolism
2021 May 21
Borgmann, D;Ciglieri, E;Biglari, N;Brandt, C;Cremer, AL;Backes, H;Tittgemeyer, M;Wunderlich, FT;Brüning, JC;Fenselau, H;
PMID: 34043943 | DOI: 10.1016/j.cmet.2021.05.002
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com