Kume, M;Ahmad, A;DeFea, KA;Vagner, J;Dussor, G;Boitano, S;Price, TJ;
PMID: 37315729 | DOI: 10.1016/j.jpain.2023.06.006
Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a common, dose-limiting side effect of cancer therapy. Protease-activated receptor 2 (PAR2) is implicated in a variety of pathologies, including CIPN. In this study, we demonstrate the role of PAR2 expressed in sensory neurons in a paclitaxel (PTX)-induced model of CIPN in mice. PAR2 knockout/WT mice and mice with PAR2 ablated in sensory neurons were treated with paclitaxel administered via intraperitoneal injection. In vivo behavioral studies were done in mice using von Frey filaments and the Mouse Grimace Scale. We then examined immunohistochemical staining of dorsal root ganglion (DRG) and hind paw skin samples from CIPN mice to measure satellite cell gliosis and intra-epidermal nerve fiber (IENF) density. Pharmacological reversal of CIPN pain was tested with the PAR2 antagonist C781. Mechanical allodynia caused by paclitaxel treatment was alleviated in PAR2 knockout mice of both sexes. In the PAR2 sensory neuronal conditional knockout (cKO) mice, both mechanical allodynia and facial grimacing were attenuated in mice of both sexes. In the dorsal root ganglion of the paclitaxel-treated PAR2 cKO mice, satellite glial cell activation was reduced compared to control mice. IENF density analysis of the skin showed that the paclitaxel-treated control mice have a reduction in nerve fiber density while the PAR2 cKO mice had a comparable skin innervation as the vehicle-treated animals. Similar results were seen with satellite cell gliosis in the DRG where gliosis induced by PTX was absent in PAR cKO mice. Finally, C781 was able to transiently reverse established PTX-evoked mechanical allodynia. PERSPECTIVE: Our work demonstrates that PAR2 expressed in sensory neurons plays a key role in paclitaxel-induced mechanical allodynia, spontaneous pain and signs of neuropathy, suggesting PAR2 as a possible therapeutic target in multiple aspects of paclitaxel CIPN.
The CysLT2R receptor mediates leukotriene C4-driven acute and chronic itch
Proceedings of the National Academy of Sciences of the United States of America
Voisin, T;Perner, C;Messou, MA;Shiers, S;Ualiyeva, S;Kanaoka, Y;Price, TJ;Sokol, CL;Bankova, LG;Austen, KF;Chiu, IM;
PMID: 33753496 | DOI: 10.1073/pnas.2022087118
Acute and chronic itch are burdensome manifestations of skin pathologies including allergic skin diseases and atopic dermatitis, but the underlying molecular mechanisms are not well understood. Cysteinyl leukotrienes (CysLTs), comprising LTC4, LTD4, and LTE4, are produced by immune cells during type 2 inflammation. Here, we uncover a role for LTC4 and its signaling through the CysLT receptor 2 (CysLT2R) in itch. Cysltr2 transcript is highly expressed in dorsal root ganglia (DRG) neurons linked to itch in mice. We also detected CYSLTR2 in a broad population of human DRG neurons. Injection of leukotriene C4 (LTC4) or its nonhydrolyzable form NMLTC4, but neither LTD4 nor LTE4, induced dose-dependent itch but not pain behaviors in mice. LTC4-mediated itch differed in bout duration and kinetics from pruritogens histamine, compound 48/80, and chloroquine. NMLTC4-induced itch was abrogated in mice deficient for Cysltr2 or when deficiency was restricted to radioresistant cells. Itch was unaffected in mice deficient for Cysltr1, Trpv1, or mast cells (WSh mice). CysLT2R played a role in itch in the MC903 mouse model of chronic itch and dermatitis, but not in models of dry skin or compound 48/80- or Alternaria-induced itch. In MC903-treated mice, CysLT levels increased in skin over time, and Cysltr2-/- mice showed decreased itch in the chronic phase of inflammation. Collectively, our study reveals that LTC4 acts through CysLT2R as its physiological receptor to induce itch, and CysLT2R contributes to itch in a model of dermatitis. Therefore, targeting CysLT signaling may be a promising approach to treat inflammatory itch.
Huang J, Polgár E, Solinski HJ, Mishra SK, Tseng PY, Iwagaki N, Boyle KA, Dickie AC, Kriegbaum MC, Wildner H, Zeilhofer HU, Watanabe M, Riddell JS, Todd AJ, Hoon MA.
PMID: 29556030 | DOI: 10.1038/s41593-018-0119-z
Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide.
Nature Cardiovascular Research
Yamada, S;Ko, T;Hatsuse, S;Nomura, S;Zhang, B;Dai, Z;Inoue, S;Kubota, M;Sawami, K;Yamada, T;Sassa, T;Katagiri, M;Fujita, K;Katoh, M;Ito, M;Harada, M;Toko, H;Takeda, N;Morita, H;Aburatani, H;Komuro, I;
| DOI: 10.1038/s44161-022-00140-7
The underlying mechanisms of ventricular remodeling after myocardial infarction (MI) remain largely unknown. In this study, we performed an integrative analysis of spatial transcriptomics and single-nucleus RNA sequencing (snRNA-seq) in a murine MI model and found that mechanical stress-response genes are expressed at the border zone and play a critical role in left ventricular remodeling after MI. An integrative analysis of snRNA-seq and spatial transcriptome of the heart tissue after MI identified the unique cluster that appeared at the border zone in an early stage, highly expressing mechano-sensing genes, such as Csrp3. AAV9-mediated gene silencing and overexpression of Csrp3 demonstrated that upregulation of Csrp3 plays critical roles in preventing cardiac remodeling after MI by regulation of genes associated with mechano-sensing. Overall, our study not only provides an insight into spatiotemporal molecular changes after MI but also highlights that the mechano-sensing genes at the border zone act as adaptive regulators of left ventricular remodeling.
Journal of molecular and cellular cardiology
Mohenska, M;Tan, NM;Tokolyi, A;Furtado, MB;Costa, MW;Perry, AJ;Hatwell-Humble, J;van Duijvenboden, K;Nim, HT;Ji, YMM;Charitakis, N;Bienroth, D;Bolk, F;Vivien, C;Knaupp, AS;Powell, DR;Elliott, DA;Porrello, ER;Nilsson, SK;Del Monte-Nieto, G;Rosenthal, NA;Rossello, FJ;Polo, JM;Ramialison, M;
PMID: 34624332 | DOI: 10.1016/j.yjmcc.2021.09.011
Understanding the spatial gene expression and regulation in the heart is key to uncovering its developmental and physiological processes, during homeostasis and disease. Numerous techniques exist to gain gene expression and regulation information in organs such as the heart, but few utilize intuitive true-to-life three-dimensional representations to analyze and visualise results. Here we combined transcriptomics with 3D-modelling to interrogate spatial gene expression in the mammalian heart. For this, we microdissected and sequenced transcriptome-wide 18 anatomical sections of the adult mouse heart. Our study has unveiled known and novel genes that display complex spatial expression in the heart sub-compartments. We have also created 3D-cardiomics, an interface for spatial transcriptome analysis and visualization that allows the easy exploration of these data in a 3D model of the heart. 3D-cardiomics is accessible from http://3d-cardiomics.erc.monash.edu/.
Hill, RZ;Loud, MC;Dubin, AE;Peet, B;Patapoutian, A;
PMID: 35732741 | DOI: 10.1038/s41586-022-04860-5
Itch triggers scratching, a behavioural defence mechanism that aids in the removal of harmful irritants and parasites1. Chemical itch is triggered by many endogenous and exogenous cues, such as pro-inflammatory histamine, which is released during an allergic reaction1. Mechanical itch can be triggered by light sensations such as wool fibres or a crawling insect2. In contrast to chemical itch pathways, which have been extensively studied, the mechanisms that underlie the transduction of mechanical itch are largely unknown. Here we show that the mechanically activated ion channel PIEZO1 (ref. 3) is selectively expressed by itch-specific sensory neurons and is required for their mechanically activated currents. Loss of PIEZO1 function in peripheral neurons greatly reduces mechanically evoked scratching behaviours and both acute and chronic itch-evoked sensitization. Finally, mice expressing a gain-of-function Piezo1 allele4 exhibit enhanced mechanical itch behaviours. Our studies reveal the polymodal nature of itch sensory neurons and identify a role for PIEZO1 in the sensation of itch.
MrgprC11+ sensory neurons mediate glabrous skin itch
Proceedings of the National Academy of Sciences of the United States of America
Steele, HR;Xing, Y;Zhu, Y;Hilley, HB;Lawson, K;Nho, Y;Niehoff, T;Han, L;
PMID: 33876765 | DOI: 10.1073/pnas.2022874118
Itch arising from glabrous skin (palms and soles) has attracted limited attention within the field due to the lack of methodology. This is despite glabrous itch arising from many medical conditions such as plantar and palmar psoriasis, dyshidrosis, and cholestasis. Therefore, we developed a mouse glabrous skin behavioral assay to investigate the contribution of three previously identified pruriceptive neurons in glabrous skin itch. Our results show that MrgprA3+ and MrgprD+ neurons, although key mediators for hairy skin itch, do not play important roles in glabrous skin itch, demonstrating a mechanistic difference in itch sensation between hairy and glabrous skin. We found that MrgprC11+ neurons are the major mediators for glabrous skin itch. Activation of MrgprC11+ neurons induced glabrous skin itch, while ablation of MrgprC11+ neurons reduced both acute and chronic glabrous skin itch. Our study provides insights into the mechanisms of itch and opens up new avenues for future glabrous skin itch research.
Solinski HJ, Kriegbaum MC, Tseng PY, Earnest TW, Gu X, Barik A, Chesler AT and Hoon MA
PMID: 30917312 | DOI: 10.1016/j.celrep.2019.02.089
Itch is an unpleasant skin sensation that can be triggered by exposure to many chemicals, including those released by mast cells. The natriuretic polypeptide b (Nppb)-expressing class of sensory neurons, when activated, elicits scratching responses in mice, but it is unclear which itch-inducing agents stimulate these cells and the receptors involved. Here, we identify receptors expressed by Nppb neurons and demonstrate the functional importance of these receptors as sensors of endogenous pruritogens released by mast cells. Our search for receptors in Nppb neurons reveals that they express leukotriene, serotonin, and sphingosine-1-phosphate receptors. Targeted cell ablation, calcium imaging of primary sensory neurons, and conditional receptor knockout studies demonstrate that these receptors induce itch by the direct stimulation of Nppb neurons and neurotransmission through the canonical gastrin-releasing peptide (GRP)-dependent spinal cord itch pathway. Together, our results define a molecular and cellular pathway for mast cell-induced itch.