International journal of molecular sciences
Son, M;Kim, GY;Yang, Y;Ha, S;Kim, J;Kim, D;Chung, HY;Moon, HR;Chung, KW;
PMID: 36902313 | DOI: 10.3390/ijms24054882
The peroxisome proliferator-activated receptor (PPAR) nuclear receptor has been an interesting target for the treatment of chronic diseases. Although the efficacy of PPAR pan agonists in several metabolic diseases has been well studied, the effect of PPAR pan agonists on kidney fibrosis development has not been demonstrated. To evaluate the effect of the PPAR pan agonist MHY2013, a folic acid (FA)-induced in vivo kidney fibrosis model was used. MHY2013 treatment significantly controlled decline in kidney function, tubule dilation, and FA-induced kidney damage. The extent of fibrosis determined using biochemical and histological methods showed that MHY2013 effectively blocked the development of fibrosis. Pro-inflammatory responses, including cytokine and chemokine expression, inflammatory cell infiltration, and NF-κB activation, were all reduced with MHY2013 treatment. To demonstrate the anti-fibrotic and anti-inflammatory mechanisms of MHY2013, in vitro studies were conducted using NRK49F kidney fibroblasts and NRK52E kidney epithelial cells. In the NRK49F kidney fibroblasts, MHY2013 treatment significantly reduced TGF-β-induced fibroblast activation. The gene and protein expressions of collagen I and α-smooth muscle actin were significantly reduced with MHY2013 treatment. Using PPAR transfection, we found that PPARγ played a major role in blocking fibroblast activation. In addition, MHY2013 significantly reduced LPS-induced NF-κB activation and chemokine expression mainly through PPARβ activation. Taken together, our results suggest that administration of the PPAR pan agonist effectively prevented renal fibrosis in both in vitro and in vivo models of kidney fibrosis, implicating the therapeutic potential of PPAR agonists against chronic kidney diseases.
Peisker, F;Halder, M;Nagai, J;Ziegler, S;Kaesler, N;Hoeft, K;Li, R;Bindels, EMJ;Kuppe, C;Moellmann, J;Lehrke, M;Stoppe, C;Schaub, MT;Schneider, RK;Costa, I;Kramann, R;
PMID: 35641541 | DOI: 10.1038/s41467-022-30682-0
The cardiac vascular and perivascular niche are of major importance in homeostasis and during disease, but we lack a complete understanding of its cellular heterogeneity and alteration in response to injury as a major driver of heart failure. Using combined genetic fate tracing with confocal imaging and single-cell RNA sequencing of this niche in homeostasis and during heart failure, we unravel cell type specific transcriptomic changes in fibroblast, endothelial, pericyte and vascular smooth muscle cell subtypes. We characterize a specific fibroblast subpopulation that exists during homeostasis, acquires Thbs4 expression and expands after injury driving cardiac fibrosis, and identify the transcription factor TEAD1 as a regulator of fibroblast activation. Endothelial cells display a proliferative response after injury, which is not sustained in later remodeling, together with transcriptional changes related to hypoxia, angiogenesis, and migration. Collectively, our data provides an extensive resource of transcriptomic changes in the vascular niche in hypertrophic cardiac remodeling.
Clinical science (London, England : 1979)
Kumar, R;Lee, MH;Kassa, B;Fonseca Balladares, DC;Mickael, C;Sanders, L;Andruska, A;Kumar, M;Spiekerkoetter, E;Bandeira, A;Stenmark, KR;Tuder, RM;Graham, BB;
PMID: 37014925 | DOI: 10.1042/CS20220642
Pulmonary hypertension (PH) can occur as a complication of schistosomiasis. In humans, schistosomiasis-PH persists despite antihelminthic therapy and parasite eradication. We hypothesized that persistent disease arises as a consequence of exposure repetition.Following intraperitoneal sensitization, mice were experimentally exposed to Schistosoma eggs by intravenous injection, either once or three times repeatedly. The phenotype was characterized by right heart catheterization and tissue analysis.Following intraperitoneal sensitization, a single intravenous Schistosoma egg exposure resulted in a PH phenotype that peaked at 7-14 days, followed by spontaneous resolution. Three sequential exposures resulted in a persistent PH phenotype. Inflammatory cytokines were not significantly different between mice exposed to one or three egg doses, but there was an increase in perivascular fibrosis in those who received three egg doses. Significant perivascular fibrosis was also observed in autopsy specimens from patients who died of this condition.Repeatedly exposing mice to schistosomiasis causes a persistent PH phenotype, accompanied by perivascular fibrosis. Perivascular fibrosis may contribute to the persistent schistosomiasis-PH observed in humans with this disease.
Liu, Y;Guerrero-Juarez, C;Xiao, F;Shettigar, N;Ramos, R;Kuan, C;Lin, Y;de Jesus Martinez Lomeli, L;Park, J;Oh, J;Liu, R;Lin, S;Tartaglia, M;Yang, R;Yu, Z;Nie, Q;Li, J;Plikus, M;
| DOI: 10.1016/j.devcel.2022.06.005
Hair follicle stem cells are regulated by dermal papilla fibroblasts, their principal signaling niche. Overactivation of Hedgehog signaling in the niche dramatically accelerates hair growth and induces follicle multiplication in mice. On single-cell RNA sequencing, dermal papilla fibroblasts increase heterogeneity to include new Wnt5ahigh states. Transcriptionally, mutant fibroblasts activate regulatory networks for Gli1, Alx3, Ebf1, Hoxc8, Sox18, and Zfp239. These networks jointly upregulate secreted factors for multiple hair morphogenesis and hair-growth-related pathways. Among these is non-conventional TGF-β ligand Scube3. We show that in normal mouse skin, Scube3 is expressed only in dermal papillae of growing, but not in resting follicles. SCUBE3 protein microinjection is sufficient to induce new hair growth, and pharmacological TGF-β inhibition rescues mutant hair hyper-activation phenotype. Moreover, dermal-papilla-enriched expression of SCUBE3 and its growth-activating effect are partially conserved in human scalp hair follicles. Thus, Hedgehog regulates mesenchymal niche function in the hair follicle via SCUBE3/TGF-β mechanism.
Yang, Y;Ha, S;Jeong, S;Jang, CW;Kim, J;Im, DS;Chung, HY;Chung, KW;
PMID: 34619300 | DOI: 10.1016/j.tox.2021.152973
Chronic kidney disease (CKD) is characterized by persistent abnormalities in kidney function, accompanied by structural changes. Interstitial fibrosis, characterized by the accumulation of extracellular matrix (ECM) proteins, is frequently detected during CKD development. Given the multiple underlying causes of CKD, numerous animal models have been developed to advance our understanding of human nephropathy. Herein, we compared two reliable toxin-induced mouse kidney fibrosis models in terms of fibrosis and inflammation. Administration of folic acid (250 mg/kg, intraperitoneal injection) or an adenine diet (0.25 % for three weeks) afforded similar effects on kidney function, as detected by increased serum nitrogen levels. In addition, the kidneys exhibited a similar extent of tubule dilation and kidney damage. The degree of fibrosis was compared using various biological methods. Although both models developed a significant fibrotic phenotype, the adenine diet-fed model showed a marginally higher increase in fibrosis than the folic acid model, as reflected by increased kidney ECM gene and protein levels. We further compared inflammatory responses in the kidneys. Interestingly, pro-inflammatory responses, including cytokine expression and immune cell infiltration, were significantly increased in adenine diet-fed kidneys. Furthermore, collagen expression was identified in the macrophage-infiltrated region, implying the importance of inflammation in fibrogenesis. Collectively, we observed that the adenine diet-fed kidney fibrosis model presented a higher inflammatory response with increased fibrosis when compared with the folic acid-induced kidney fibrosis model, indicating the importance of the inflammatory response in fibrosis development.
Linssen, JDG;van Neerven, SM;Aelvoet, AS;Elbers, CC;Vermeulen, L;Dekker, E;
PMID: 35962368 | DOI: 10.1186/s12876-022-02442-3
Familial adenomatous polyposis (FAP) is a rare autosomal dominant disease characterized by germline mutations in the Adenomatous Polyposis Coli (APC) gene, resulting in the development of numerous colorectal adenomas. As these patients have a high risk of developing colorectal cancer (CRC), guidelines suggest prophylactic colectomy during early adulthood, however, adenoma development is still observed in the remaining intestinal tract. Therefore, FAP patients would benefit from chemoprevention strategies reducing the development of adenomas. Recent work in mice reveals a chemopreventive effect of lithium on the development of adenomas by inhibiting the expansion of Apc mutated intestinal stem cells (ISCs) within the crypts of normal intestinal mucosa. Here, we aim to investigate the effect of lithium on the spread of APC mutant cells within the human intestinal epithelium.This prospective phase II single arm trial has a duration of 18 months. FAP patients (18-35 years) with a genetically confirmed APC mutation who did not undergo colectomy will be treated with lithium carbonate orally achieving a serum level of 0.2-0.4 mmol/l between month 6 and 12. Colonoscopy with biopsies of normal intestinal mucosa will be performed at baseline and every six months. The primary endpoint is the effect of lithium on the spread of APC mutant cells within intestinal crypts over time by using APC specific marker NOTUM in situ hybridization. Secondary endpoints include change in adenoma burden, patient reported side effects and safety-outcomes. Total sample size is 12 patients and recruitment will take place in the Amsterdam UMC, location AMC in the Netherlands.The outcome of this study will function as a proof-of-concept for the development of novel chemoprevention approaches that interfere with the competition between normal and mutant ISCs.ClinicalTrials.gov ( https://clinicaltrials.gov/ ): NCT05402891 (June 1, 2022) and the EU Clinical Trials Register: EuraCT 2022-000240-30 (January 1, 2022).
CB1 R and iNOS are distinct players promoting pulmonary fibrosis in Hermansky-Pudlak syndrome
Clinical and translational medicine
Cinar, R;Park, JK;Zawatsky, CN;Coffey, NJ;Bodine, SP;Abdalla, J;Yokoyama, T;Jourdan, T;Jay, L;Zuo, MXG;O'Brien, KJ;Huang, J;Mackie, K;Alimardanov, A;Iyer, MR;Gahl, WA;Kunos, G;Gochuico, BR;Malicdan, MCV;
PMID: 34323400 | DOI: 10.1002/ctm2.471
Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.
Modelling TGFβR and Hh pathway regulation of prognostic matrisome molecules in ovarian cancer
Delaine-Smith, R;Maniati, E;Malacrida, B;Nichols, S;Roozitalab, R;Jones, R;Lecker, L;Pearce, O;Knight, M;Balkwill, F;
| DOI: 10.1016/j.isci.2021.102674
In a multi-level ‘deconstruction’ of omental metastases, we previously identified a prognostic matrisome gene expression signature in high-grade serous ovarian cancer (HGSOC) and twelve other malignancies. Here, our aim was to understand how six of these extracellular matrix, ECM, molecules, COL11A1, COMP, FN1, VCAN, CTSB and COL1A1, are up-regulated in cancer. Using biopsies, we identified significant associations between TGFβR activity, Hedgehog signalling and these ECM molecules and studied the associations in mono-, co- and tri-culture. Activated omental fibroblasts produced more matrix than malignant cells, directed by TGFβR and Hedgehog signalling crosstalk. We ‘reconstructed’ omental metastases in tri-cultures of HGSOC cells, omental fibroblasts and adipocytes. This combination was sufficient to generate all six ECM proteins and the matrisome expression signature. TGFβR and Hedgehog inhibitor combinations attenuated fibroblast activation, gel and ECM remodelling in these models. The tri-culture model reproduces key features of omental metastases and allows study of diseased-associated ECM.
Jin Y, Cong Q, Gvozdenovic-Jeremic J, Hu J, Zhang Y, Terkeltaub R, Yang Y.
PMID: 30111653 | DOI: 10.1242/dev.164830
The differentiated phenotype of articular chondrocytes of synovial joints needs to be maintained throughout life. Disruption of the articular cartilage, frequently associated with chondrocyte hypertrophy and calcification, is a central feature in osteoarthritis (OA). However, the molecular mechanisms whereby phenotypes of articular chondrocytes are maintained and pathological calcification is inhibited remain poorly understood. Recently, the ecto-enzyme ENPP1, a suppressor of pathological calcification, was reported to be decreased in joint cartilage with OA in both human and mouse, and Enpp1 deficiency causes joint calcification. Here we found that Hedgehog signaling activation contributes to ectopic joint calcification in the Enpp1-/- mice. In the Enpp1-/- joints, Hedgehog signaling was upregulated. Further activation of Hedgehog signaling by removing Patched 1 in the Enpp1-/- mice enhanced ectopic joint calcification, while removing Gli2 partially rescued the ectopic calcification phenotype. Additionally, reduction of Gαs in the Enpp1-/- mice also enhanced joint calcification, suggesting Enpp1 inhibited Hedgehog signaling and chondrocyte hypertrophy by activating Gαs-PKA signaling. Our findings provide new insights in the mechanisms underlying Enpp1 regulation of joint integrity.
Duan L, Zhang XD, Miao WX, Sun YJ, Xiong G, Wu Q, Li G, Yang P, Yu H, Li H, Wang Y, Zhang M, Hu LY, Tong X, Zhou WH, Yu X.
PMID: - | DOI: 10.1016/j.neuron.2018.08.030
Acute infection, if not kept in check, can lead to systemic inflammatory responses in the brain. Here, we show that within 2 hr of systemic inflammation, PDGFRβ mural cells of blood vessels rapidly secrete chemokine CCL2, which in turn increases total neuronal excitabilityby promoting excitatory synaptic transmission in glutamatergic neurons of multiple brain regions. By single-cell RNA sequencing, we identified Col1a1 and Rgs5 subgroups of PDGFRβ cells as the main source of CCL2. Lipopolysaccharide (LPS)- or Poly(I:C)-treated pericyte culture medium induced similar effects in a CCL2-dependent manner. Importantly, in Pdgfrb-Cre;Ccl2fl/fl mice, LPS-induced increase in excitatory synaptic transmission was significantly attenuated. These results demonstrate in vivo that PDGFRβ cells function as initial sensors of external insults by secreting CCL2, which relays the signal to the central nervous system. Through their gateway position in the brain, PDGFRβ cells are ideally positioned to respond rapidly to environmental changes and to coordinate responses.
Nabhan, AN;Webster, JD;Adams, JJ;Blazer, L;Everrett, C;Eidenschenk, C;Arlantico, A;Fleming, I;Brightbill, HD;Wolters, PJ;Modrusan, Z;Seshagiri, S;Angers, S;Sidhu, SS;Newton, K;Arron, JR;Dixit, VM;
PMID: 37321220 | DOI: 10.1016/j.cell.2023.05.022
Wnt ligands oligomerize Frizzled (Fzd) and Lrp5/6 receptors to control the specification and activity of stem cells in many species. How Wnt signaling is selectively activated in different stem cell populations, often within the same organ, is not understood. In lung alveoli, we show that distinct Wnt receptors are expressed by epithelial (Fzd5/6), endothelial (Fzd4), and stromal (Fzd1) cells. Fzd5 is uniquely required for alveolar epithelial stem cell activity, whereas fibroblasts utilize distinct Fzd receptors. Using an expanded repertoire of Fzd-Lrp agonists, we could activate canonical Wnt signaling in alveolar epithelial stem cells via either Fzd5 or, unexpectedly, non-canonical Fzd6. A Fzd5 agonist (Fzd5ag) or Fzd6ag stimulated alveolar epithelial stem cell activity and promoted survival in mice after lung injury, but only Fzd6ag promoted an alveolar fate in airway-derived progenitors. Therefore, we identify a potential strategy for promoting regeneration without exacerbating fibrosis during lung injury.
Oncogenic BRAF, unrestrained by TGFβ-receptor signalling, drives right-sided colonic tumorigenesis
Leach, JDG;Vlahov, N;Tsantoulis, P;Ridgway, RA;Flanagan, DJ;Gilroy, K;Sphyris, N;Vázquez, EG;Vincent, DF;Faller, WJ;Hodder, MC;Raven, A;Fey, S;Najumudeen, AK;Strathdee, D;Nixon, C;Hughes, M;Clark, W;Shaw, R;S:CORT consortium, ;van Hooff, SR;Huels, DJ;Medema, JP;Barry, ST;Frame, MC;Unciti-Broceta, A;Leedham, SJ;Inman, GJ;Jackstadt, R;Thompson, BJ;Campbell, AD;Tejpar, S;Sansom, OJ;
PMID: 34103493 | DOI: 10.1038/s41467-021-23717-5
Right-sided (proximal) colorectal cancer (CRC) has a poor prognosis and a distinct mutational profile, characterized by oncogenic BRAF mutations and aberrations in mismatch repair and TGFβ signalling. Here, we describe a mouse model of right-sided colon cancer driven by oncogenic BRAF and loss of epithelial TGFβ-receptor signalling. The proximal colonic tumours that develop in this model exhibit a foetal-like progenitor phenotype (Ly6a/Sca1+) and, importantly, lack expression of Lgr5 and its associated intestinal stem cell signature. These features are recapitulated in human BRAF-mutant, right-sided CRCs and represent fundamental differences between left- and right-sided disease. Microbial-driven inflammation supports the initiation and progression of these tumours with foetal-like characteristics, consistent with their predilection for the microbe-rich right colon and their antibiotic sensitivity. While MAPK-pathway activating mutations drive this foetal-like signature via ERK-dependent activation of the transcriptional coactivator YAP, the same foetal-like transcriptional programs are also initiated by inflammation in a MAPK-independent manner. Importantly, in both contexts, epithelial TGFβ-receptor signalling is instrumental in suppressing the tumorigenic potential of these foetal-like progenitor cells.