Vet Immunol Immunopathol.
Rusk RA, Palmer MV, Waters WR, McGill JL.
PMID: 29129226 | DOI: 10.1016/j.vetimm.2017.10.004
Bovine γδ T cells are amongst the first cells to accumulate at the site of Mycobacterium bovis infection; however, their role in the developing lesion remains unclear. We utilized transcriptomics analysis, in situ hybridization, and a macrophage/γδ T cell co-culture system to elucidate the role of γδ T cells in local immunity to M. bovis infection. Transcriptomics analysis revealed that γδ T cells upregulated expression of several novel, immune-associated genes in response to stimulation with M. bovis antigen. BCG-infected macrophage/γδ T cell co-cultures confirmed the results of our RNAseq analysis, and revealed that γδ T cells from M. bovis-infected animals had a significant impact on bacterial viability. Analysis of γδ T cells within late-stage M. bovis granulomas revealed significant expression of IFN-γ and CCL2, but not IL-10, IL-22, or IL-17. Our results suggest γδ T cells influence local immunity to M. bovis through cytokine secretion and direct effects on bacterial burden.
Barutcu, AR;Wu, M;Braunschweig, U;Dyakov, BJA;Luo, Z;Turner, KM;Durbic, T;Lin, ZY;Weatheritt, RJ;Maass, PG;Gingras, AC;Blencowe, BJ;
PMID: 35182477 | DOI: 10.1016/j.molcel.2021.12.010
The nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains, and the lamina. Remarkably, speckles and lamina are associated with distinct classes of retained introns enriched in genes that function in RNA processing, translation, and the cell cycle, among other processes. In contrast to the lamina-proximal introns, retained introns associated with speckles are relatively short, GC-rich, and enriched for functional sites of RNA-binding proteins that are concentrated in these domains. They are also highly differentially regulated across diverse cellular contexts, including the cell cycle. Thus, our study provides a resource of nuclear domain-associated transcripts and further reveals speckles and lamina as hubs of distinct populations of retained introns linked to gene regulation and cell cycle progression.
Rodriguez, M;Tsai, C;Tsai, M;
| DOI: 10.1016/j.bpj.2022.11.1391
The mitochondrial calcium uniporter is a multi-subunit calcium channel that imports Ca2+ into mitochondria. Its MICU subunits (MICU1, MICU2, and the neuron-specific MICU3) gate the channel by blocking the pore in low Ca2+. Upon local Ca2+ elevation, Ca2+ binds to MICUs to cause MICU unblock, thus opening the pore so Ca2+ can permeate. Previous work using cell lines suggests that the uniporter in mammalian cells is exclusively regulated by a MICU1-MICU2 heterodimer. However, we show here that multiple types of electrically excitable cells, including skeletal muscle and cardiac tissues, can also possess a MICU1-MICU1 homodimer or virtually no MICUs. Kinetic analyses demonstrate that MICU1 has a higher Ca2+ affinity than MICU2, and that without MICUs the uniporter is constitutively open. As a result, uniporters with the MICU1-1 homodimer or no MICUs exhibit higher transport activities, leading to mitochondria accumulating much higher levels of matrix Ca2+. Using a Seahorse assay, we show that cells with MICU1-1 or no MICUs have impaired basal oxidative phosphorylation, likely due to increased ROS and damaged respiratory-complex proteins, including NDUFS3 and COX2. These cells, moreover, are highly susceptible to apoptosis. The disadvantage of employing MICU1-1 or omitting MICUs, however, accompanies strong physiological benefits. We show that in response to intracellular Ca2+ signals, these mitochondria import more Ca2+ and consequently produce more ATP, thus better supplying the energy required for the cellular processes initiated by the Ca2+ signals. In conclusion, this work reveals that tissues can manipulate their mitochondrial calcium uptake properties to suit their unique physiological needs by customizing their MICU regulation of the mitochondrial calcium uniporter.
Xu, Q;Rydz, C;Nguyen Huu, VA;Rocha, L;Palomino La Torre, C;Lee, I;Cho, W;Jabari, M;Donello, J;Lyon, DC;Brooke, RT;Horvath, S;Weinreb, RN;Ju, WK;Foik, A;Skowronska-Krawczyk, D;
PMID: 36397653 | DOI: 10.1111/acel.13737
Aging, a universal process that affects all cells in an organism, is a major risk factor for a group of neuropathies called glaucoma, where elevated intraocular pressure is one of the known stresses affecting the tissue. Our understanding of molecular impact of aging on response to stress in retina is very limited; therefore, we developed a new mouse model to approach this question experimentally. Here we show that susceptibility to response to stress increases with age and is primed on chromatin level. We demonstrate that ocular hypertension activates a stress response that is similar to natural aging and involves activation of inflammation and senescence. We show that multiple instances of pressure elevation cause aging of young retina as measured on transcriptional and DNA methylation level and are accompanied by local histone modification changes. Our data show that repeated stress accelerates appearance of aging features in tissues and suggest chromatin modifications as the key molecular components of aging. Lastly, our work further emphasizes the importance of early diagnosis and prevention as well as age-specific management of age-related diseases, including glaucoma.
Herring, CA;Simmons, RK;Freytag, S;Poppe, D;Moffet, JJD;Pflueger, J;Buckberry, S;Vargas-Landin, DB;Clément, O;Echeverría, EG;Sutton, GJ;Alvarez-Franco, A;Hou, R;Pflueger, C;McDonald, K;Polo, JM;Forrest, ARR;Nowak, AK;Voineagu, I;Martelotto, L;Lister, R;
PMID: 36318921 | DOI: 10.1016/j.cell.2022.09.039
Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.
Gajewski, T;Rouhani, S;Trujillo, J;Pyzer, A;Yu, J;Fessler, J;Cabanov, A;Higgs, E;Cron, K;Zha, Y;Lu, Y;Bloodworth, J;Abasiyanik, M;Okrah, S;Flood, B;Hatogai, K;Leung, M;Pezeshk, A;Kozloff, L;Reschke, R;Strohbehn, G;Chervin, CS;Kumar, M;Schrantz, S;Madariaga, ML;Beavis, K;Yeo, KT;Sweis, R;Segal, J;Tay, S;Izumchenko, E;Mueller, J;Chen, L;
PMID: 34845442 | DOI: 10.21203/rs.3.rs-1083825/v1
The mechanisms explaining progression to severe COVID-19 remain poorly understood. It has been proposed that immune system dysregulation/over-stimulation may be implicated, but it is not clear how such processes would lead to respiratory failure. We performed comprehensive multiparameter immune monitoring in a tightly controlled cohort of 128 COVID-19 patients, and used the ratio of oxygen saturation to fraction of inspired oxygen (SpO2 / FiO2) as a physiologic measure of disease severity. Machine learning algorithms integrating 139 parameters identified IL-6 and CCL2 as two factors predictive of severe disease, consistent with the therapeutic benefit observed with anti-IL6-R antibody treatment. However, transcripts encoding these cytokines were not detected among circulating immune cells. Rather, in situ analysis of lung specimens using RNAscope and immunofluorescent staining revealed that elevated IL-6 and CCL2 were dominantly produced by infected lung type II pneumocytes. Severe disease was not associated with higher viral load, deficient antibody responses, or dysfunctional T cell responses. These results refine our understanding of severe COVID-19 pathophysiology, indicating that aberrant cytokine production by infected lung epithelial cells is a major driver of immunopathology. We propose that these factors cause local immune regulation towards the benefit of the virus.
CCL21 activation of the MALAT1/SRSF1/mTOR axis underpins the development of gastric carcinoma
Journal of translational medicine
Fu, Q;Tan, X;Tang, H;Liu, J;
PMID: 34001131 | DOI: 10.1186/s12967-021-02806-5
As a significant cause of malignancy mortality, gastric carcinoma (GC) has been well documented to be an often-fatal diagnosis. Despite the limitations of effective therapy, immunotherapy has emerged as a promising therapeutic approach capable of killing cancer cells via the immune system. The current study was conducted to investigate the effect of cytokine C-C motif chemokine ligand 21 (CCL21) on GC progression through the metastasis-associated lung adenocarcinoma transcript 1/serine arginine-rich splicing factor 1/mammalian target of rapamycin (MALAT1/SRSF1/mTOR) axis. Bioinformatics analysis was conducted to identify the key genes associated with GC and to subsequently predict their downstream genes. The effect of CCL21, MALAT1, and SRSF1 on the malignant phenotypes and epithelial-mesenchymal transition (EMT) of SGC-7901 and MGC-803 cells in-vitro and the tumorigenesis of SGC-7901 and MGC-803 cells in-vivo were assessed by expression determination and plasmid transfection. Additionally, RNA pull-down and RNA binding protein immunoprecipitation experiments were performed to determine the MALAT1-microRNA-202-3p (miR-203-3p) interaction and miR-202-3p-SRSF1 interaction followed by the analysis of their effect on the mTOR pathway. CCL21 was identified as a key GC immune gene. Overexpressed CCL21, MALAT1, and SRSF1 along with poorly expressed miR-202-3p were identified in the GC cells. CCL21 induced the MALAT1 expression in a time- and dose-dependent manner. Functionally, MALAT1 targeted miR-202-3p but upregulated SRSF1 and activated mTOR. Crucially, evidence was obtained indicating that CCL21 promoted both the malignant phenotypes and EMT of SGC-7901 and MGC-803 cells in-vitro and the tumorigenesis of SGC-7901 and MGC-803 cells in-vivo by increasing the MALAT1-induced upregulation of SRSF1. Taken together, the key observations of our study provide evidence that CCL21 enhances the progression of GC via the MALAT1/SRSF1/mTOR axis, providing a novel therapeutic target for the treatment of GC.
Liou GY, Bastea L, Fleming A, Döppler H, Edenfield BH, Dawson DW, Zhang L, Bardeesy N, Storz P.
PMID: 28514653 | DOI: 10.1016/j.celrep.2017.04.052
The contributions of the innate immune system to the development of pancreatic cancer are still ill defined. Inflammatory macrophages can initiate metaplasia of pancreatic acinar cells to a duct-like phenotype (acinar-to-ductal metaplasia [ADM]), which then gives rise to pancreatic intraepithelial neoplasia (PanIN) when oncogenic KRas is present. However, it remains unclear when and how this inflammatory macrophage population is replaced by tumor-promoting macrophages. Here, we demonstrate the presence of interleukin-13 (IL-13), which can convert inflammatory into Ym1+ alternatively activated macrophages, at ADM/PanIN lesions. We further show that Ym1+ macrophages release factors, such as IL-1ra and CCL2, to drive pancreatic fibrogenesis and tumorigenesis. Treatment of mice expressing oncogenic KRas under an acinar cell-specific promoter with a neutralizing antibody for IL-13 significantly decreased the accumulation of alternatively activated macrophages at these lesions, resulting in decreased fibrosis and lesion growth.