Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (23)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (7) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (6) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (3) Apply RNAscope filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Reagent Kit (1) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • Neuroscience (16) Apply Neuroscience filter
  • Cancer (4) Apply Cancer filter
  • Pain (3) Apply Pain filter
  • Development (2) Apply Development filter
  • ALS (1) Apply ALS filter
  • Hypersensitivity (1) Apply Hypersensitivity filter
  • Immune Cells (1) Apply Immune Cells filter
  • Plant Sciences (1) Apply Plant Sciences filter
  • Sensory neuron development (1) Apply Sensory neuron development filter
  • Single Cell (1) Apply Single Cell filter
  • Stem cell (1) Apply Stem cell filter

Category

  • Publications (23) Apply Publications filter
Interleukin-4 receptor signaling modulates neuronal network activity

The Journal of experimental medicine

2022 Jun 06

Hanuscheck, N;Thalman, C;Domingues, M;Schmaul, S;Muthuraman, M;Hetsch, F;Ecker, M;Endle, H;Oshaghi, M;Martino, G;Kuhlmann, T;Bozek, K;van Beers, T;Bittner, S;von Engelhardt, J;Vogt, J;Vogelaar, CF;Zipp, F;
PMID: 35587822 | DOI: 10.1084/jem.20211887

Evidence is emerging that immune responses not only play a part in the central nervous system (CNS) in diseases but may also be relevant for healthy conditions. We discovered a major role for the interleukin-4 (IL-4)/IL-4 receptor alpha (IL-4Rα) signaling pathway in synaptic processes, as indicated by transcriptome analysis in IL-4Rα-deficient mice and human neurons with/without IL-4 treatment. Moreover, IL-4Rα is expressed presynaptically, and locally available IL-4 regulates synaptic transmission. We found reduced synaptic vesicle pools, altered postsynaptic currents, and a higher excitatory drive in cortical networks of IL-4Rα-deficient neurons. Acute effects of IL-4 treatment on postsynaptic currents in wild-type neurons were mediated via PKCγ signaling release and led to increased inhibitory activity supporting the findings in IL-4Rα-deficient neurons. In fact, the deficiency of IL-4Rα resulted in increased network activity in vivo, accompanied by altered exploration and anxiety-related learning behavior; general learning and memory was unchanged. In conclusion, neuronal IL-4Rα and its presynaptic prevalence appear relevant for maintaining homeostasis of CNS synaptic function.
RNA profiling of human dorsal root ganglia reveals sex-differences in mechanisms promoting neuropathic pain

Brain : a journal of neurology

2022 Jul 22

Ray, PR;Shiers, S;Caruso, JP;Tavares-Ferreira, D;Sankaranarayanan, I;Uhelski, ML;Li, Y;North, RY;Tatsui, C;Dussor, G;Burton, MD;Dougherty, PM;Price, TJ;
PMID: 35867896 | DOI: 10.1093/brain/awac266

Neuropathic pain is a leading cause of high impact pain, is often disabling and is poorly managed by current therapeutics. Here we focused on a unique group of neuropathic pain patients undergoing thoracic vertebrectomy where the dorsal root ganglia is removed as part of the surgery allowing for molecular characterization and identification of mechanistic drivers of neuropathic pain independently of preclinical models. Our goal was to quantify whole transcriptome RNA abundances using RNA-seq in pain-associated human dorsal root ganglia from these patients, allowing comprehensive identification of molecular changes in these samples by contrasting them with non-pain associated dorsal root ganglia. We sequenced 70 human dorsal root ganglia, and among these 50 met inclusion criteria for sufficient neuronal mRNA signal for downstream analysis. Our expression analysis revealed profound sex differences in differentially expressed genes including increase of IL1B, TNF, CXCL14, and OSM in male and including CCL1, CCL21, PENK and TLR3 in female dorsal root ganglia associated with neuropathic pain. Co-expression modules revealed enrichment in members of JUN-FOS signalling in males, and centromere protein coding genes in females. Neuro-immune signalling pathways revealed distinct cytokine signalling pathways associated with neuropathic pain in males (OSM, LIF, SOCS1) and females (CCL1, CCL19, CCL21). We validated cellular expression profiles of a subset of these findings using RNAscope in situ hybridization. Our findings give direct support for sex differences in underlying mechanisms of neuropathic pain in patient populations.
IGF1-driven induction of GPCR kinase 2 in the primary afferent neuron promotes resolution of acute hyperalgesia

Brain research bulletin

2021 Oct 21

Takemura, H;Kushimoto, K;Horii, Y;Fujita, D;Matsuda, M;Sawa, T;Amaya, F;
PMID: 34687776 | DOI: 10.1016/j.brainresbull.2021.10.011

Dynamic regulation of G-protein-coupled receptor (GPCR) kinase 2 (GRK2) expression restores cellular function by protecting from overstimulation via GPCR and non-GPCR signaling. In the primary afferent neurons, GRK2 negatively regulates nociceptive tone. The present study tested the hypothesis that induction of GRK2 in the primary afferent neurons contributes to the resolution of acute pain after tissue injury. GRK2 expression in the dorsal root ganglion (DRG) was analyzed at 1 and 7 days after the incision. Intraperitoneal administration of a GRK2 inhibitor was performed 7 days post-incision in male Sprague-Dawley rats who underwent plantar incisions to analyze the pain-related behavioral effect of the GRK2 inhibitor. Separately, GRK2 expression was analyzed after injecting insulin-like growth factor 1 (IGF1) into the rat hind paw. In addition, an IGF1 receptor (IGF1R) inhibitor was administered in the plantar incision rats to determine its effect on the incision-induced hyperalgesia and GRK2 expression. Plantar incision induced an increase in GRK2 in the DRG at 7 days, but not at 1 day post-incision. Acute hyperalgesia after the plantar incision disappeared by 7 days post-incision. Intraperitoneal injection of the GRK2 inhibitor at this time reinstated mechanical hyperalgesia, although the GRK2 inhibitor did not produce hyperalgesia in naive rats. After the incision, IGF1 expression increased in the paw, but not in the DRG. Intraplantar injection of IGF1 increased GRK2 expression in the ipsilateral DRG. IGF1R inhibitor administration prevented both the induction of GRK2 and resolution of hyperalgesia after the plantar incision. These findings demonstrate that induction of GRK2 expression driven by tissue IGF1 has potent analgesic effects and produces resolution of hyperalgesia after tissue injury. Dysregulation of IGF1-GRK2 signaling could potentially lead to failure of the spontaneous resolution of acute pain and, hence, development of chronic pain after surgery.
Unique molecular features and cellular responses differentiate two populations of motor cortical layer 5b neurons in a preclinical model of ALS

Cell reports

2022 Mar 22

Moya, MV;Kim, RD;Rao, MN;Cotto, BA;Pickett, SB;Sferrazza, CE;Heintz, N;Schmidt, EF;
PMID: 35320722 | DOI: 10.1016/j.celrep.2022.110556

Many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), lead to the selective degeneration of discrete cell types in the CNS despite the ubiquitous expression of many genes linked to disease. Therapeutic advancement depends on understanding the unique cellular adaptations that underlie pathology of vulnerable cells in the context of disease-causing mutations. Here, we employ bacTRAP molecular profiling to elucidate cell type-specific molecular responses of cortical upper motor neurons in a preclinical ALS model. Using two bacTRAP mouse lines that label distinct vulnerable or resilient projection neuron populations in motor cortex, we show that the regulation of oxidative phosphorylation (Oxphos) pathways is a common response in both cell types. However, differences in the baseline expression of genes involved in Stem and the handling of reactive oxygen species likely lead to the selective degeneration of the vulnerable cells. These results provide a framework to identify cell-type-specific processes in neurodegenerative disease.
Dysregulation of CXCL14 promotes malignant phenotypes of esophageal squamous carcinoma cells via regulating SRC and EGFR signaling

Biochemical and biophysical research communications

2022 Apr 04

Guo, J;Chang, C;Yang, LY;Cai, HQ;Chen, DX;Zhang, Y;Cai, Y;Wang, JJ;Wei, WQ;Hao, JJ;Wang, MR;
PMID: 35421632 | DOI: 10.1016/j.bbrc.2022.03.144

The present study was to identify abnormal methylation genes implicated in esophageal squamous cell carcinoma (ESCC). Genomic methylation alterations in ESCC tissues were analyzed using laser-microdissection and whole-genome bisulfite sequencing. CXCL14 promoter was frequently hypermethylated in ESCC tissues. The correlation of CXCL14 hypermethylation status and the mRNA and protein expression levels were validated using nested methylation-specific PCR (nMS-PCR), RNAscope in situ hybridization (RISH) and Western blot. RISH results showed completely negative CXCL14 expression in 34.3% (34/99) ESCC, compared with those in the basal layer cells of normal epithelia. Low expression of CXCL14 was more present in patients with lower differentiation. The anticancer role of CXCL14 has been commonly associated with immune regulation in the literature. Here, we observed by functional analysis that CXCL14 can also act as a tumor suppressor in ESCC cells. 5-Aza-dC treatment suppressed CXCL14 methylation and up-regulated the expression of CXCL14. Ectopic expression of CXCL14 suppressed the proliferation, invasion, tumor growth, and lung metastasis of ESCC cells. Both ectopic expression and induction of CXCL14 with 5-Aza-dC inhibited the activity of SRC, MEK1/2 and STAT3 in ESCC cells, while activated EGFR. Importantly, a combination of CXCL14 expression and SRC or EGFR inhibitor dramatically repressed the proliferation of ESCC cells and the growth of xenografts. Our findings revealed a direct tumor suppressor role of CXCL14, but not through the immune system. The data suggest that for ESCC patients with low level CXCL14, increasing CXCL14 expression combined with inhibition of SRC or EGFR might be a promising therapeutic strategy.
Sodium leak channel contributes to neuronal sensitization in neuropathic pain

Progress in neurobiology

2021 Mar 22

Zhang, D;Zhao, W;Liu, J;Ou, M;Liang, P;Li, J;Chen, Y;Liao, D;Bai, S;Shen, J;Chen, X;Huang, H;Zhou, C;
PMID: 33766679 | DOI: 10.1016/j.pneurobio.2021.102041

Neuropathic pain affects up to 10% of the total population and no specific target is ideal for therapeutic need. The sodium leak channel (NALCN), a non-selective cation channel, mediates the background Na+ leak conductance and controls neuronal excitability and rhythmic behaviors. Here, we show that increases of NALCN expression and function in dorsal root ganglion (DRG) and dorsal spinal cord contribute to chronic constriction injury (CCI)-induced neuropathic pain in rodents. NALCN current and neuronal excitability in acutely isolated DRG neurons and spinal cord slices of rats were increased after CCI which were decreased to normal levels by NALCN-siRNA. Accordingly, pain-related symptoms were significantly alleviated by NALCN-siRNA-mediated NALCN knockdown and completely prevented by NALCN-shRNA-mediated NALCN knockdown in rats or by conditional NALCN knockout in mice. Our results indicate that increases in NALCN expression and function contribute to CCI-induced neuronal sensitization; therefore, NALCN may be a novel molecular target for control of neuropathic pain.
Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type

Nat Neurosci.

2018 Aug 27

"Boldog E, Bakken TE, Hodge RD, Novotny M, Aevermann BD, Baka J, Bordé S, Close JL, Diez-Fuertes F, Ding SL, Faragó N, Kocsis AK, Kovács B, Maltzer Z, McCorrison JM, Miller JA, Molnár G, Oláh G, Ozsvár A, Rózsa M, Shehata SI, Smith KA, Sunkin SM, Tran D
PMID: 30150662 | DOI: 10.1038/s41593-018-0205-2

We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large 'rosehip'-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1+CCK+, CNR1-SST-CALB2-PVALB-) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons.

Single-cell sequencing reveals suppressive transcriptional programs regulated by MIS/AMH in neonatal ovaries

Proceedings of the National Academy of Sciences of the United States of America

2021 May 18

Meinsohn, MC;Saatcioglu, HD;Wei, L;Li, Y;Horn, H;Chauvin, M;Kano, M;Nguyen, NMP;Nagykery, N;Kashiwagi, A;Samore, WR;Wang, D;Oliva, E;Gao, G;Morris, ME;Donahoe, PK;Pépin, D;
PMID: 33980714 | DOI: 10.1073/pnas.2100920118

Müllerian inhibiting substance (MIS/AMH), produced by granulosa cells of growing follicles, is an important regulator of folliculogenesis and follicle development. Treatment with exogenous MIS in mice suppresses follicle development and prevents ovulation. To investigate the mechanisms by which MIS inhibits follicle development, we performed single-cell RNA sequencing of whole neonatal ovaries treated with MIS at birth and analyzed at postnatal day 6, coinciding with the first wave of follicle growth. We identified distinct transcriptional signatures associated with MIS responses in the ovarian cell types. MIS treatment inhibited proliferation in granulosa, surface epithelial, and stromal cell types of the ovary and elicited a unique signature of quiescence in granulosa cells. In addition to decreasing the number of growing preantral follicles, we found that MIS treatment uncoupled the maturation of germ cells and granulosa cells. In conclusion, MIS suppressed neonatal follicle development by inhibiting proliferation, imposing a quiescent cell state, and preventing granulosa cell differentiation.
Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain

Nat Commun

2020 Jan 14

Yu X, Liu H, Hamel KA, Morvan MG, Yu S, Leff J, Guan Z, Braz JM, Basbaum AI
PMID: 31937758 | DOI: 10.1038/s41467-019-13839-2

Paralleling the activation of dorsal horn microglia after peripheral nerve injury is a significant expansion and proliferation of macrophages around injured sensory neurons in dorsal root ganglia (DRG). Here we demonstrate a critical contribution of DRG macrophages, but not those at the nerve injury site, to both the initiation and maintenance of the mechanical hypersensitivity that characterizes the neuropathic pain phenotype. In contrast to the reported sexual dimorphism in the microglial contribution to neuropathic pain, depletion of DRG macrophages reduces nerve injury-induced mechanical hypersensitivity and expansion of DRG macrophages in both male and female mice. However, fewer macrophages are induced in the female mice and deletion of colony-stimulating factor 1 from sensory neurons, which prevents nerve injury-induced microglial activation and proliferation, only reduces macrophage expansion in male mice. Finally, we demonstrate molecular cross-talk between axotomized sensory neurons and macrophages, revealing potential peripheral DRG targets for neuropathic pain management
Expression of the chemokine CXCL14 in the tumour stroma is an independent marker of survival in breast cancer.

Br J Cancer.

2016 May 26

Sjöberg E, Augsten M, Bergh J, Jirström K, Östman A.
PMID: 27115465 | DOI: 10.1038/bjc.2016.104.

Abstract

BACKGROUND:

Expression of the chemokine CXCL14 has previously been shown to be elevated in the tumour stroma of, for example, prostate and breast cancer. Cancer-associated fibroblast-derived CXCL14 enhances tumour growth in mouse models of prostate and breast cancer. However, the prognostic significance of compartment-specific expression of CXCL14 has not been studied.

METHODS:

CXCL14 mRNA expression was analysed in a breast cancer tissue microarray (TMA) of formalin-fixed, paraffin-embedded tumours by the RNAscope 2.0 Assay. Epithelial and stromal expression was analysed separately and correlated with clinicopathological characteristics and survival.

RESULTS:

CXCL14 was variably and independently expressed in malignant and stromal cells of breast cancer. Total and stromal expression of CXCL14 did not associate with clinicopathological parameters. Epithelial CXCL14 expression was significantly associated with oestrogen receptor α (ERα)-positive tumours and lower proliferation status. Total CXCL14 expression correlated significantly with shorter breast cancer-specific and recurrence-free survival. High stromal, but not epithelial, CXCL14 expression was significantly associated with shorter survival in univariable and multivariable analyses. Moreover, the correlation between stromal CXCL14 expression and survival was more prominent in ER negative, triple negative and basal-like breast cancers.

CONCLUSIONS:

The identification of prognostic significance of stromal CXCL14 in breast cancer demonstrates novel clinical relevance of a stroma-derived secreted factor and illustrates the importance of tumour compartment-specific analyses. On the basis of the prognostic signals from difficult-to-treat subgroups, CXCL14 should also be considered as a candidate drug target.

CXCL14 promotes a robust brain tumor-associated immune response in glioma

Clinical cancer research : an official journal of the American Association for Cancer Research

2022 May 05

Kumar, A;Mohamed, E;Tong, S;Chen, K;Mukherjee, J;Lim, Y;Wong, CM;Boosalis, Z;Shai, A;Pieper, RO;Gupta, N;Perry, A;Bollen, AW;Molinaro, AM;Solomon, DA;Shieh, JTC;Phillips, JJ;
PMID: 35511927 | DOI: 10.1158/1078-0432.CCR-21-2830

The immunosuppressive tumor microenvironment present in the majority of diffuse glioma limits therapeutic response to immunotherapy. As the determinants of the glioma-associated immune response are relatively poorly understood, the study of glioma with more robust tumor-associated immune responses may be particularly useful to identify novel immunomodulatory factors that can promote T cell effector function in glioma.We used multiplex immune-profiling, proteomic profiling, and gene expression analysis to define the tumor-associated immune response in two molecular subtypes of glioma and identify factors that may modulate this response. We then used patient-derived glioma cultures and an immunocompetent murine model for malignant glioma to analyze the ability of tumor-intrinsic factors to promote a CD8+ T cell response.As compared with IDH-mutant astrocytoma, MAPK-activated pleomorphic xanthoastrocytoma (PXA) harbored increased numbers of activated cytotoxic CD8+ T cells and Iba1+ microglia/macrophages, increased MHC class I expression, enrichment of genes associated with antigen presentation and processing, and increased tumor cell secretion of the chemokine CXCL14. CXCL14 promoted activated CD8+ T cell chemotaxis in vitro, recruited tumor-infiltrating CD8+ T cells in vivo, and prolonged overall survival in a cytotoxic T cell-dependent manner. The immunomodulatory molecule B7-H3 was also highly expressed in PXA.We identify the MAPK-activated lower grade astrocytoma PXA, as having an immune-rich tumor microenvironment and suggest this tumor may be particularly vulnerable to immunotherapeutic modulation. We also identify CXCL14 as an important determinant of the glioma-associated immune microenvironment, sufficient to promote an anti-tumor CD8+ T cell response.
Tools for analysis and conditional deletion of subsets of sensory neurons

Wellcome Open Research

2021 Sep 30

Santana-Varela, S;Bogdanov, Y;Gossage, S;Okorokov, A;Li, S;de Clauser, L;Alves-Simoes, M;Sexton, J;Iseppon, F;Luiz, A;Zhao, J;Wood, J;Cox, J;
| DOI: 10.12688/wellcomeopenres.17090.1

Background: Somatosensation depends on primary sensory neurons of the trigeminal and dorsal root ganglia (DRG). Transcriptional profiling of mouse DRG sensory neurons has defined at least 18 distinct neuronal cell types. Using an advillin promoter, we have generated a transgenic mouse line that only expresses diphtheria toxin A (DTA) in sensory neurons in the presence of Cre recombinase. This has allowed us to ablate specific neuronal subsets within the DRG using a range of established and novel Cre lines that encompass all sets of sensory neurons.    Methods: A floxed-tdTomato-stop-DTA bacterial artificial chromosome (BAC) transgenic reporter line (AdvDTA) under the control of the mouse advillin DRG promoter was generated. The line was first validated using a Nav1.8Cre and then crossed to CGRPCreER (Calca), ThCreERT2, Tmem45bCre, Tmem233Cre, Ntng1Cre and TrkBCreER (Ntrk2) lines. Pain behavioural assays included Hargreaves’, hot plate, Randall-Selitto, cold plantar, partial sciatic nerve ligation and formalin tests. Results: Motor activity, as assessed by the rotarod test, was normal for all lines tested. Noxious mechanosensation was significantly reduced when either Nav1.8 positive neurons or Tmem45b positive neurons were ablated whilst acute heat pain was unaffected. In contrast, noxious mechanosensation was normal following ablation of CGRP-positive neurons but acute heat pain thresholds were significantly elevated and a reduction in nocifensive responses was observed in the second phase of the formalin test. Ablation of TrkB-positive neurons led to significant deficits in mechanical hypersensitivity in the partial sciatic nerve ligation neuropathic pain model. Conclusions: Ablation of specific DRG neuronal subsets using the AdvDTA line will be a useful resource for further functional characterization of somatosensory processing, neuro-immune interactions and chronic pain disorders.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?