Somatostatin Interneurons of the Insula Mediate QR2-Dependent Novel Taste Memory Enhancement
Gould, NL;Kolatt Chandran, S;Kayyal, H;Edry, E;Rosenblum, K;
PMID: 34518366 | DOI: 10.1523/ENEURO.0152-21.2021
Forming long-term memories is crucial for adaptive behavior and survival in changing environments. The molecular consolidation processes which underlie the formation of these long-term memories are dependent on protein synthesis in excitatory and SST-expressing neurons. A centrally important, parallel process to this involves the removal of the memory constraint quinone reductase 2 (QR2), which has been recently shown to enhance memory consolidation for novel experiences in the cortex and hippocampus, via redox modulation. However, it is unknown within which cell type in the cortex removal of QR2 occurs, nor how this affects neuronal function. Here, we use novel taste learning in the mouse anterior insular cortex (aIC) to show that similarly to mRNA translation, QR2 removal occurs in excitatory and SST-expressing neurons. Interestingly, both novel taste and QR2 inhibition reduce excitability specifically within SST, but not excitatory neurons. Furthermore, reducing QR2 expression in SST, but not in PV or excitatory neurons, is sufficient to enhance taste memory. Thus, QR2 mediated intrinsic property changes of SST interneurons in the aIC is a central removable factor to allow novel taste memory formation. This previously unknown involvement of QR2 and SST interneurons in resetting aIC activity hours following learning, describes a molecular mechanism to define cell circuits for novel information. Therefore, the QR2 pathway in SST interneurons provides a fresh new avenue by which to tackle age-related cognitive deficits, while shedding new light onto the functional machinations of long-term memory formation for novel information.
Englund, J;Haikonen, J;Shteinikov, V;Amarilla, SP;Atanasova, T;Shintyapina, A;Ryazantseva, M;Partanen, J;Voikar, V;Lauri, SE;
PMID: 34663781 | DOI: 10.1038/s41398-021-01654-7
Early life stress (ELS) is a well-characterized risk factor for mood and anxiety disorders. GABAergic microcircuits in the amygdala are critically implicated in anxiety; however, whether their function is altered after ELS is not known. Here we identify a novel mechanism by which kainate receptors (KARs) modulate feedforward inhibition in the lateral amygdala (LA) and show that this mechanism is downregulated after ELS induced by maternal separation (MS). Specifically, we show that in control rats but not after MS, endogenous activity of GluK1 subunit containing KARs disinhibit LA principal neurons during activation of cortical afferents. GluK1 antagonism attenuated excitability of parvalbumin (PV)-expressing interneurons, resulting in loss of PV-dependent inhibitory control and an increase in firing of somatostatin-expressing interneurons. Inactivation of Grik1 expression locally in the adult amygdala reduced ongoing GABAergic transmission and was sufficient to produce a mild anxiety-like behavioral phenotype. Interestingly, MS and GluK1-dependent phenotypes showed similar gender specificity, being detectable in male but not female rodents. Our data identify a novel KAR-dependent mechanism for cell-type and projection-specific functional modulation of the LA GABAergic microcircuit and suggest that the loss of GluK1 KAR function contributes to anxiogenesis after ELS.
Maynard KR, Kardian A, Hill JL, Mai Y, Barry B, Hallock HL, Jaffe AE, Martinowich K
PMID: 31941661 | DOI: 10.1523/ENEURO.0310-19.2019
Brain-derived neurotrophic factor (BDNF) signals through its cognate receptor tropomyosin receptor kinase B (TrkB) to promote the function of several classes of inhibitory interneurons. We previously reported that loss of BDNF-TrkB signaling in cortistatin (Cort)-expressing interneurons leads to behavioral hyperactivity and spontaneous seizures in mice. We performed bulk RNA sequencing (RNA-seq) from the cortex of mice with disruption of BDNF-TrkB signaling in cortistatin interneurons, and identified differential expression of genes important for excitatory neuron function. Using translating ribosome affinity purification and RNA-seq, we define a molecular profile for Cort-expressing inhibitory neurons and subsequently compare the translatome of normal and TrkB-depleted Cort neurons, revealing alterations in calcium signaling and axon development. Several of the genes enriched in Cort neurons and differentially expressed in TrkB-depleted neurons are also implicated in autism and epilepsy. Our findings highlight TrkB-dependent molecular pathways as critical for the maturation of inhibitory interneurons and support the hypothesis that loss of BDNF signaling in Cort interneurons leads to altered excitatory/inhibitory balance
Iwasaki, M;Lefevre, A;Althammer, F;Clauss Creusot, E;Łąpieś, O;Petitjean, H;Hilfiger, L;Kerspern, D;Melchior, M;Küppers, S;Krabichler, Q;Patwell, R;Kania, A;Gruber, T;Kirchner, MK;Wimmer, M;Fröhlich, H;Dötsch, L;Schimmer, J;Herpertz, SC;Ditzen, B;Schaaf, CP;Schönig, K;Bartsch, D;Gugula, A;Trenk, A;Blasiak, A;Stern, JE;Darbon, P;Grinevich, V;Charlet, A;
PMID: 36828816 | DOI: 10.1038/s41467-023-36641-7
The hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG). Using a newly generated line of transgenic rats (OTR-IRES-Cre), we determined that most of the vlPAG OTR expressing cells targeted by OT projections are GABAergic. Ex vivo stimulation of parvocellular OT axons in the vlPAG induced local OT release, as measured with OT sensor GRAB. In vivo, optogenetically-evoked axonal OT release in the vlPAG of as well as chemogenetic activation of OTR vlPAG neurons resulted in a long-lasting increase of vlPAG neuronal activity. This lead to an indirect suppression of sensory neuron activity in the spinal cord and strong analgesia in both female and male rats. Altogether, we describe an OT-vlPAG-spinal cord circuit that is critical for analgesia in both inflammatory and neuropathic pain models.
Cutando, L;Puighermanal, E;Castell, L;Tarot, P;Belle, M;Bertaso, F;Arango-Lievano, M;Ango, F;Rubinstein, M;Quintana, A;Chédotal, A;Mameli, M;Valjent, E;
PMID: 35710984 | DOI: 10.1038/s41593-022-01092-8
The cerebellum, a primary brain structure involved in the control of sensorimotor tasks, also contributes to higher cognitive functions including reward, emotion and social interaction. Although the regulation of these behaviors has been largely ascribed to the monoaminergic system in limbic regions, the contribution of cerebellar dopamine signaling in the modulation of these functions remains largely unknown. By combining cell-type-specific transcriptomics, histological analyses, three-dimensional imaging and patch-clamp recordings, we demonstrate that cerebellar dopamine D2 receptors (D2Rs) in mice are preferentially expressed in Purkinje cells (PCs) and regulate synaptic efficacy onto PCs. Moreover, we found that changes in D2R levels in PCs of male mice during adulthood alter sociability and preference for social novelty without affecting motor functions. Altogether, these findings demonstrate novel roles for D2R in PC function and causally link cerebellar D2R levels of expression to social behaviors.
Single-cell and single-nucleus RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates, and humans
Bakken, TE;van Velthoven, CT;Menon, V;Hodge, RD;Yao, Z;Nguyen, TN;Graybuck, LT;Horwitz, GD;Bertagnolli, D;Goldy, J;Yanny, AM;Garren, E;Parry, S;Casper, T;Shehata, SI;Barkan, ER;Szafer, A;Levi, BP;Dee, N;Smith, KA;Sunkin, SM;Bernard, A;Phillips, J;Hawrylycz, MJ;Koch, C;Murphy, GJ;Lein, E;Zeng, H;Tasic, B;
PMID: 34473054 | DOI: 10.7554/eLife.64875
Abundant evidence supports the presence of at least three distinct types of thalamocortical (TC) neurons in the primate dorsal lateral geniculate nucleus (dLGN) of the thalamus, the brain region that conveys visual information from the retina to the primary visual cortex (V1). Different types of TC neurons in mice, humans, and macaques have distinct morphologies, distinct connectivity patterns, and convey different aspects of visual information to the cortex. To investigate the molecular underpinnings of these cell types, and how these relate to differences in dLGN between human, macaque, and mice, we profiled gene expression in single nuclei and cells using RNA-sequencing. These efforts identified four distinct types of TC neurons in the primate dLGN: magnocellular (M) neurons, parvocellular (P) neurons, and two types of koniocellular (K) neurons. Despite extensively documented morphological and physiological differences between M and P neurons, we identified few genes with significant differential expression between transcriptomic cell types corresponding to these two neuronal populations. Likewise, the dominant feature of TC neurons of the adult mouse dLGN is high transcriptomic similarity, with an axis of heterogeneity that aligns with core vs. shell portions of mouse dLGN. Together, these data show that transcriptomic differences between principal cell types in the mature mammalian dLGN are subtle relative to the observed differences in morphology and cortical projection targets. Finally, alignment of transcriptome profiles across species highlights expanded diversity of GABAergic neurons in primate versus mouse dLGN and homologous types of TC neurons in primates that are distinct from TC neurons in mouse.
Albert-Gascó H, Ma S, Ros-Bernal F, Sánchez-Pérez AM, Gundlach AL, Olucha-Bordonau FE.
PMID: - | DOI: 10.3389/fnana.2017.00133
The medial septum (MS) complex modulates hippocampal function and related behaviors. Septohippocampal projections promote and control different forms of hippocampal synchronization. Specifically, GABAergic and cholinergic projections targeting the hippocampal formation from the MS provide bursting discharges to promote theta rhythm, or tonic activity to promote gamma oscillations. In turn, the MS is targeted by ascending projections from the hypothalamus and brainstem. One of these projections arises from the nucleus incertus in the pontine tegmentum, which contains GABA neurons that co-express the neuropeptide relaxin-3 (Rln3). Both stimulation of the nucleus incertus and septal infusion of Rln3 receptor agonist peptides promotes hippocampal theta rhythm. The Gi/o-protein-coupled receptor, relaxin-family peptide receptor 3 (RXFP3), is the cognate receptor for Rln3 and identification of the transmitter phenotype of neurons expressing RXFP3 in the septohippocampal system can provide further insights into the role of Rln3 transmission in the promotion of septohippocampal theta rhythm. Therefore, we used RNAscope multiplex in situ hybridization to characterize the septal neurons expressing Rxfp3mRNA in the rat. Our results demonstrate that Rxfp3 mRNA is abundantly expressed in vesicular GABA transporter (vGAT) mRNA- and parvalbumin (PV) mRNA-positive GABA neurons in MS, whereas ChATmRNA-positive acetylcholine neurons lack Rxfp3 mRNA. Approximately 75% of Rxfp3 mRNA-positive neurons expressed vGAT mRNA (and 22% were PV mRNA-positive), while the remaining 25% expressed Rxfp3 mRNA only, consistent with a potential glutamatergic phenotype. Similar proportions were observed in the posterior septum. The occurrence of RXFP3 in PV-positive GABAergic neurons gives support to a role for the Rln3-RXFP3 system in septohippocampal theta rhythm.
Yaeger, JDW;Krupp, KT;Summers, TR;Summers, CH;
PMID: 35724928 | DOI: 10.1016/j.neuropharm.2022.109168
Fear-associated memories and behavior are often expressed in contexts/environments distinctively different from those in which they are created. This generalization process contributes to psychological disorders, particularly PTSD. Stress-related neurocircuits in the basolateral amygdala (BLA) receive inputs from hypothalamic orexin (Orx) neurons, which mediate neuronal activity by targeting orexin 1 (Orx1R) and orexin 2 (Orx2R) receptors via opposing functions. In BLA, inhibition of Orx1R or activation of Orx2R ameliorate stress responsiveness and behavior. We discovered that most Orx1R+ cells also express CamKIIα, while a majority of Orx2R+ cells are colocalized with GAD67. Further, Orx1R gene Hcrtr1 expression was positively correlated, and Orx2R gene Hcrtr2 expression was negatively correlated, with freezing in a phenotype-dependent fashion (Escape vs Stay) in the Stress Alternatives Model (SAM). The SAM consists of 4-days of social interaction between test mice and novel larger aggressors. Exits positioned at opposite ends of the SAM oval arena provide opportunities to actively avoid aggression. By Day 2, mice commit to behavioral phenotypes: Escape or Stay. Pharmacologically manipulating Orx receptor activity in the BLA, before Day 3 of the SAM, was followed with standard tests of anxiety: Open Field (OF) and Elevated Plus Maze (EPM). In Stay mice, freezing in response to social conflict and locomotion during SAM interaction (not home cage locomotion) were generalized to OF, and blocked by intra-BLA Orx1R antagonism, but not Orx2R antagonism. Moreover, patterns of social avoidance for Escape and Stay mice were recapitulated in OF, with generalization mediated by Orx1R and Orx2R antagonism, plus Orx2R stimulation.
Newton, D;Oh, H;Shukla, R;Misquitta, K;Fee, C;Banasr, M;Sibille, E;
| DOI: 10.1016/j.biopsych.2021.10.015
Introduction Information processing in cortical cell microcircuits involves regulation of excitatory pyramidal (PYR) cells by inhibitory Somatostatin- (SST), Parvalbumin- (PV), and Vasoactive intestinal peptide- (VIP) expressing interneurons. Human post-mortem and rodent studies show impaired PYR-cell dendritic morphology and decreased SST-cell markers in MDD or after chronic stress. However, knowledge of coordinated changes across microcircuit cell-types is virtually absent. Methods We investigated the transcriptomic effects of unpredictable chronic mild stress (UCMS) on distinct microcircuit cell-types in the medial prefrontal cortex (Cingulate regions 24a/b and 32) in mice. C57Bl/6 mice, exposed to UCMS or control housing for five weeks, were assessed for anxiety- and depressive-like behaviors. Microcircuit cell-types were laser-microdissected and processed for RNA-sequencing. Results UCMS induced predicted elevations in behavioral emotionality in mice. DESeq2 analysis revealed unique differentially-expressed genes in each cell-type after UCMS. Pre-synaptic functions, oxidative stress response, metabolism, and translational regulation were differentially dysregulated across cell-types, whereas nearly all cell-types showed downregulated post-synaptic gene signatures. Across the cortical microcircuit, we observed a shift from a distributed transcriptomic coordination across cell-types in controls towards UCMS-induced increased coordination between PYR-, SST- and PV-cells, and hub-like role for PYR-cells. Lastly, we identified a microcircuit-wide coexpression network enriched in synaptic, bioenergetic, and oxidative stress response genes that correlated with UCMS-induced behaviors. Conclusions These findings suggest cell-specific deficits, microcircuit-wide synaptic reorganization, and a shift in cells regulating the cortical excitation-inhibition balance, suggesting increased coordinated regulation of PYR-cells by SST- and PV-cells.
Kumar A, Kopra J, Varendi K, Porokuokka LL, Panhelainen A, Kuure S, Marshall P, Karalija N, Härma MA, Vilenius C, Lilleväli K, Tekko T, Mijatovic J, Pulkkinen N, Jakobson M, Jakobson M, Ola R, Palm E, Lindahl M, Strömberg I, Võikar V, Piepponen TP, Saarma
PMID: 26681446 | DOI: 10.1371/journal.pgen.1005710.
Degeneration of nigrostriatal dopaminergic system is the principal lesion in Parkinson's disease. Because glial cell line-derived neurotrophic factor (GDNF) promotes survival of dopamine neurons in vitro and in vivo, intracranial delivery of GDNF has been attempted for Parkinson's disease treatment but with variable success. For improving GDNF-based therapies, knowledge on physiological role of endogenous GDNF at the sites of its expression is important. However, due to limitations of existing genetic model systems, such knowledge is scarce. Here, we report that prevention of transcription of Gdnf 3'UTR in Gdnf endogenous locus yields GDNF hypermorphic mice with increased, but spatially unchanged GDNF expression, enabling analysis of postnatal GDNF function. We found that increased level of GDNF in the central nervous system increases the number of adult dopamine neurons in the substantia nigra pars compacta and the number of dopaminergic terminals in the dorsal striatum. At the functional level, GDNF levels increased striatal tissue dopamine levels and augmented striatal dopamine release and re-uptake. In a proteasome inhibitor lactacystin-induced model of Parkinson's disease GDNF hypermorphic mice were protected from the reduction in striatal dopamine and failure of dopaminergic system function. Importantly, adverse phenotypic effects associated with spatially unregulated GDNF applications were not observed. Enhanced GDNF levels up-regulated striatal dopamine transporter activity by at least five fold resulting in enhanced susceptibility to 6-OHDA, a toxin transported into dopamine neurons by DAT. Further, we report how GDNF levels regulate kidney development and identify microRNAs miR-9, miR-96, miR-133, and miR-146a as negative regulators of GDNF expression via interaction with Gdnf 3'UTR in vitro. Our results reveal the role of GDNF in nigrostriatal dopamine system postnatal development and adult function, and highlight the importance of correct spatial expression of GDNF. Furthermore, our results suggest that 3'UTR targeting may constitute a useful tool in analyzing gene function.
Dis Model Mech. 2019 Jan 14.
Jones W Jr, Rodriguez J, Bassnett S.
PMID: PMID: 30642872 | DOI: DOI:10.1242/dmm.037283
Fibrillin is an evolutionarily ancient protein that lends elasticity and resiliency to a variety of tissues. In humans, mutations in fibrillin-1 cause Marfan and related syndromes, conditions in which the eye is often severely affected. To gain insights into the ocular sequelae of Marfan syndrome, we targeted Fbn1 in mouse lens or non-pigmented ciliary epithelium (NPCE). Conditional knockout of Fbn1 in NPCE, but not lens, profoundly affected the ciliary zonule, the system of fibrillin-rich fibers that centers the lens in the eye. The tensile strength of the fibrillin-depleted zonule was reduced substantially, due to a shift toward production of smaller caliber fibers. By three months, zonular fibers invariably ruptured and mice developed ectopia lentis, a hallmark of Marfan syndrome. At later stages, untethered lenses lost their polarity and developed cataracts, and the length and volume of mutant eyes increased. This model thus captures key aspects of Marfan-related syndromes, providing insights into the role of fibrillin-1 in eye development and disease.
Molecular and Cellular Neuroscience
Wijayatunge R, Liu F, Shpargel KB, Wayne NJ, Chan U, Boua JV, Magnuson T, West AE.
PMID: - | DOI: 10.1016/j.mcn.2017.11.005
The histone H3 lysine 27 (H3K27) demethylase Kdm6b (Jmjd3) can promote cellular differentiation, however its physiological functions in neurons remain to be fully determined. We studied the expression and function of Kdm6b in differentiating granule neurons of the developing postnatal mouse cerebellum. At postnatal day 7, Kdm6b is expressed throughout the layers of the developing cerebellar cortex, but its expression is upregulated in newborn cerebellar granule neurons (CGNs). Atoh1-Cre mediated conditional knockout of Kdm6b in CGN precursors either alone or in combination with Kdm6a did not disturb the gross morphological development of the cerebellum. Furthermore, RNAi-mediated knockdown of Kdm6b in cultured CGN precursors did not alter the induced expression of early neuronal marker genes upon cell cycle exit. By contrast, knockdown of Kdm6b significantly impaired the induction of a mature neuronal gene expression program, which includes gene products required for functional synapse maturation. Loss of Kdm6b also impaired the ability of Brain-Derived Neurotrophic Factor (BDNF) to induce expression of Grin2c and Tiam1 in maturing CGNs. Taken together, these data reveal a previously unknown role for Kdm6b in the postmitotic stages of CGN maturation and suggest that Kdm6b may work, at least in part, by a transcriptional mechanism that promotes gene sensitivity to regulation by BDNF.