Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
Mesa-Ciller, C;Turiel, G;Guajardo-Grence, A;Lopez-Rodriguez, AB;Egea, J;De Bock, K;Aragonés, J;Urrutia, AA;
PMID: 35929074 | DOI: 10.1177/0271678X221118236
A central response to insufficient cerebral oxygen delivery is a profound reprograming of metabolism, which is mainly regulated by the Hypoxia Inducible Factor (HIF). Among other responses, HIF induces the expression of the atypical mitochondrial subunit NDUFA4L2. Surprisingly, NDUFA4L2 is constitutively expressed in the brain in non-hypoxic conditions. Analysis of publicly available single cell transcriptomic (scRNA-seq) data sets coupled with high-resolution multiplexed fluorescence RNA in situ hybridization (RNA F.I.S.H.) revealed that in the murine and human brain NDUFA4L2 is exclusively expressed in mural cells with the highest levels found in pericytes and declining along the arteriole-arterial smooth muscle cell axis. This pattern was mirrored by COX4I2, another atypical mitochondrial subunit. High NDUFA4L2 expression was also observed in human brain pericytes in vitro, decreasing when pericytes are muscularized and further induced by HIF stabilization in a PHD2/PHD3 dependent manner. In vivo, Vhl conditional inactivation in pericyte targeting Ng2-cre transgenic mice dramatically induced NDUFA4L2 expression. Finally NDUFA4L2 inactivation in pericytes increased oxygen consumption and therefore the degree of HIF pathway induction in hypoxia. In conclusion our work reveals that NDUFA4L2 together with COX4I2 is a key hypoxic-induced metabolic marker constitutively expressed in pericytes coupling mitochondrial oxygen consumption and cellular hypoxia response.
Connexin mRNA distribution in adult mouse kidneys
Pflugers Archiv : European journal of physiology
Geis, L;Boudriot, FF;Wagner, C;
PMID: 34365513 | DOI: 10.1007/s00424-021-02608-0
Kidneys are thought to express eight different connexin isoforms (i.e., Cx 26, 30, 32, 37, 40, 43, 45, and 46), which form either hemichannels or gap junctions serving to intercellular communication and functional synchronization. Proper function of connexins has already been shown to be crucial for regulation of renal hemodynamics and renin secretion, and there is also growing evidence for connexins to play a role in pathologic conditions such as renal fibrosis or diabetic nephropathy. Therefore, exact intrarenal localization of the different connexin isoforms gains particular interest. Until now intrarenal expression of connexins has mainly been examined by immunohistochemistry, which in part generated conflicting results depending on antibodies and fixation protocols used. In this work, we used fluorescent RNAscope as an alternative technical approach to localize renal connexin mRNAs in healthy mouse kidneys. Addition of RNAscope probes for cell type specific mRNAs was used to assign connexin mRNA signals to specific cell types. We hereby found Cx26 mRNA strongly expressed in proximal tubules, Cx30 mRNA was selectively detected in the urothelium, and Cx32 mRNA was found in proximal tubules and to a lesser extent also in collecting ducts. Cx37 mRNA was mainly associated with vascular endothelium, Cx40 mRNA was largely found in glomerular mesangial and less in vascular endothelial cells, Cx43 mRNA was sparsely expressed by interstitial cells of all kidney zones, and Cx45 mRNA was predominantly found in smooth muscle cell layers of both blood vessels and ureter as well as in mesangial and interstitial (fibroblastic) cells. Cx46 mRNA could not be detected. In summary our results essentially confirm previous data on connexin expression in the renal vasculature and in glomeruli. In addition, they demonstrate strong connexin gene expression in proximal tubules, and they suggest significant connexin expression in resident tubulointerstitial cells.
Pflugers Archiv : European journal of physiology
Heinl, ES;Broeker, KA;Lehrmann, C;Heydn, R;Krieger, K;Ortmaier, K;Tauber, P;Schweda, F;
PMID: 36480070 | DOI: 10.1007/s00424-022-02774-9
The natriuretic peptides (NPs) ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide) mediate their widespread effects by activating the natriuretic peptide receptor-A (NPR-A), while C-type natriuretic peptide (CNP) acts via natriuretic peptide receptor-B (NPR-B). NPs are removed from the circulation by internalization via the natriuretic peptide clearance receptor natriuretic peptide receptor-C (NPR-C). In addition to their well-known functions, for instance on blood pressure, all three NPs confer significant cardioprotection and renoprotection. Since neither the NP-mediated renal functions nor the renal target cells of renoprotection are completely understood, we performed systematic localization studies of NP receptors using in situ hybridization (RNAscope) in mouse kidneys. NPR-A mRNA is highly expressed in glomeruli (mainly podocytes), renal arterioles, endothelial cells of peritubular capillaries, and PDGFR-receptor β positive (PDGFR-β) interstitial cells. No NPR-A mRNA was detected by RNAscope in the tubular system. In contrast, NPR-B expression is highest in proximal tubules. NPR-C is located in glomeruli (mainly podocytes), in endothelial cells and PDGFR-β positive cells. To test for a possible regulation of NPRs in kidney diseases, their distribution was studied in adenine nephropathy. Signal intensity of NPR-A and NPR-B mRNA was reduced while their spatial distribution was unaltered compared with healthy kidneys. In contrast, NPR-C mRNA signal was markedly enhanced in cell clusters of myofibroblasts in fibrotic areas of adenine kidneys. In conclusion, the primary renal targets of ANP and BNP are glomerular, vascular, and interstitial cells but not the tubular compartment, while the CNP receptor NPR-B is highly expressed in proximal tubules. Further studies are needed to clarify the function and interplay of this specific receptor expression pattern.
The Journal of clinical investigation
Yadav, VK;Berger, JM;Singh, P;Nagarajan, P;Karsenty, G;
PMID: 34905510 | DOI: 10.1172/JCI153752
Through their ability to regulate gene expression in most organs, glucocorticoid hormones influence numerous physiological processes and therefore are key regulators of organismal homeostasis. In bone, glucocorticoid hormones inhibit the expression of the hormone Osteocalcin for poorly understood reasons. Here we show that in a classical endocrine feedback loop, osteocalcin in return enhances the biosynthesis of glucocorticoid but also mineralocorticoid hormones (adrenal steroidogenesis) in rodents and primates. Conversely, inactivating osteocalcin signalling in adrenal glands significantly impairs adrenal growth and steroidogenesis in mice. Embryo-made osteocalcin is necessary for normal Sf1 expression in foetal adrenal cells and adrenal cell steroidogenic differentiation, it therefore determines the number of steroidogenic cells present in adrenal glands of adult animals. Embryonic not postnatal osteocalcin also governs adrenal growth, adrenal steroidogenesis, blood pressure, electrolyte equilibrium and the rise of circulating corticosterone during the acute stress response in adult offspring. This osteocalcin-dependent regulation of adrenal development and steroidogenesis occurs even in the absence of a functional of hypothalamus-pituitary-adrenal axis; this explains why osteocalcin administration during pregnancy promotes adrenal growth and steroidogenesis and improves survival of adrenocorticotropic hormone signalling-deficient animals. This study reveals that a bone-derived, embryonic hormone influences lifelong adrenal functions and organismal homeostasis in the mouse.
Moll S, Yasui Y, Abed A, Murata T, Shimada H, Maeda A, Fukushima N, Kanamori M, Uhles S, Badi L, Cagarelli T, Formentini I, Drawnel F, Georges G, Bergauer T, Gasser R, Bonfil RD, Fridman R, Richter H, Funk J, Moeller MJ, Chatziantoniou C, Prunotto M.
PMID: 29859097 | DOI: 10.1186/s12967-018-1524-5
Abstract
BACKGROUND:
Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase extensively implicated in diseases such as cancer, atherosclerosis and fibrosis. Multiple preclinical studies, performed using either a gene deletion or a gene silencing approaches, have shown this receptor being a major driver target of fibrosis and glomerulosclerosis.
METHODS:
The present study investigated the role and relevance of DDR1 in human crescentic glomerulonephritis (GN). Detailed DDR1 expression was first characterized in detail in human GN biopsies using a novel selective anti-DDR1 antibody using immunohistochemistry. Subsequently the protective role of DDR1 was investigated using a highly selective, novel, small molecule inhibitor in a nephrotoxic serum (NTS) GN model in a prophylactic regime and in the NEP25 GN mouse model using a therapeutic intervention regime.
RESULTS:
DDR1 expression was shown to be mainly limited to renal epithelium. In humans, DDR1 is highly induced in injured podocytes, in bridging cells expressing both parietal epithelial cell (PEC) and podocyte markers and in a subset of PECs forming the cellular crescents in human GN. Pharmacological inhibition of DDR1 in NTS improved both renal function and histological parameters. These results, obtained using a prophylactic regime, were confirmed in the NEP25 GN mouse model using a therapeutic intervention regime. Gene expression analysis of NTS showed that pharmacological blockade of DDR1 specifically reverted fibrotic and inflammatory gene networks and modulated expression of the glomerular cell gene signature, further validating DDR1 as a major mediator of cell fate in podocytes and PECs.
CONCLUSIONS:
Together, these results suggest that DDR1 inhibition might be an attractive and promising pharmacological intervention for the treatment of GN, predominantly by targeting the renal epithelium.
Lecker, LSM;Berlato, C;Maniati, E;Delaine-Smith, R;Pearce, OMT;Heath, O;Nichols, SJ;Trevisan, C;Novak, M;McDermott, J;Brenton, JD;Cutillas, PR;Rajeeve, V;Hennino, A;Drapkin, R;Loessner, D;Balkwill, FR;
PMID: 34561272 | DOI: 10.1158/0008-5472.CAN-21-0536
The tumor microenvironment evolves during malignant progression, with major changes in nonmalignant cells, cytokine networks, and the extracellular matrix (ECM). In this study, we aimed to understand how the ECM changes during neoplastic transformation of serous tubal intraepithelial carcinoma lesions (STIC) into high-grade serous ovarian cancers (HGSOC). Analysis of the mechanical properties of human fallopian tubes (FT) and ovaries revealed that normal FT and fimbria had a lower tissue modulus, a measure of stiffness, than normal or diseased ovaries. Proteomic analysis of the matrisome fraction between FT, fimbria, and ovaries showed significant differences in the ECM protein TGF beta induced (TGFBI, also known as βig-h3). STIC lesions in the fimbria expressed high levels of TGFBI, which was predominantly produced by CD163-positive macrophages proximal to STIC epithelial cells. In vitro stimulation of macrophages with TGFβ and IL4 induced secretion of TGFBI, whereas IFNγ/LPS downregulated macrophage TGFBI expression. Immortalized FT secretory epithelial cells carrying clinically relevant TP53 mutations stimulated macrophages to secrete TGFBI and upregulated integrin αvβ3, a putative TGFBI receptor. Transcriptomic HGSOC datasets showed a significant correlation between TGFBI expression and alternatively activated macrophage signatures. Fibroblasts in HGSOC metastases expressed TGFBI and stimulated macrophage TGFBI production in vitro. Treatment of orthotopic mouse HGSOC tumors with an anti-TGFBI antibody reduced peritoneal tumor size, increased tumor monocytes, and activated β3-expressing unconventional T cells. In conclusion, TGFBI may favor an immunosuppressive microenvironment in STICs that persists in advanced HGSOC. Furthermore, TGFBI may be an effector of the tumor-promoting actions of TGFβ and a potential therapeutic target. SIGNIFICANCE: Analysis of ECM changes during neoplastic transformation reveals a role for TGFBI secreted by macrophages in immunosuppression in early ovarian cancer.
Bando, H;Brinkmeier, ML;Castinetti, F;Fang, Q;Lee, MS;Saveanu, A;Albarel, F;Dupuis, C;Brue, T;Camper, SA;
PMID: 35951005 | DOI: 10.1093/hmg/ddac192
Congenital hypopituitarism is a genetically heterogeneous condition that is part of a spectrum disorder that can include holoprosencephaly. Heterozygous mutations in SIX3 cause variable holoprosencephaly in humans and mice. We identified two children with neonatal hypopituitarism and thin pituitary stalk who were doubly heterozygous for rare, likely deleterious variants in the transcription factors SIX3 and POU1F1. We used genetically engineered mice to understand the disease pathophysiology. Pou1f1 loss of function heterozygotes are unaffected; Six3 heterozygotes have pituitary gland dysmorphology and incompletely ossified palate; and the Six3+/-; Pou1f1+/dw double; heterozygote mice have a pronounced phenotype, including pituitary growth through the palate. The interaction of Pou1f1 and Six3 in mice supports the possibility of digenic pituitary disease in children. Disruption of Six3 expression in the oral ectoderm completely ablated anterior pituitary development, and deletion of Six3 in the neural ectoderm blocked development of the pituitary stalk and both anterior and posterior pituitary lobes. Six3 is required in both oral and neural ectodermal tissues for activation of signaling pathways and transcription factors necessary for pituitary cell fate. These studies clarify the mechanism of SIX3 action in pituitary development and provide support for a digenic basis for hypopituitarism.
Arteriosclerosis, thrombosis, and vascular biology
Chattopadhyay, A;Guan, P;Majumder, S;Kaw, K;Zhou, Z;Zhang, C;Prakash, SK;Kaw, A;Buja, LM;Kwartler, CS;Milewicz, DM;
PMID: 35708026 | DOI: 10.1161/ATVBAHA.121.317451
Vascular smooth muscle cells (SMCs) undergo complex phenotypic modulation with atherosclerotic plaque formation in hyperlipidemic mice, which is characterized by de-differentiation and heterogeneous increases in the expression of macrophage, fibroblast, osteogenic, and stem cell markers. An increase of cellular cholesterol in SMCs triggers similar phenotypic changes in vitro with exposure to free cholesterol due to cholesterol entering the endoplasmic reticulum, triggering endoplasmic reticulum stress and activating Perk (protein kinase RNA-like endoplasmic reticulum kinase) signaling.We generated an SMC-specific Perk knockout mouse model, induced hyperlipidemia in the mice by AAV-PCSK9DY injection, and subjected them to a high-fat diet. We then assessed atherosclerotic plaque formation and performed single-cell transcriptomic studies using aortic tissue from these mice.SMC-specific deletion of Perk reduces atherosclerotic plaque formation in male hyperlipidemic mice by 80%. Single-cell transcriptomic data identify 2 clusters of modulated SMCs in hyperlipidemic mice, one of which is absent when Perk is deleted in SMCs. The 2 modulated SMC clusters have significant overlap of transcriptional changes, but the Perk-dependent cluster uniquely shows a global decrease in the number of transcripts, a marker of an integrated stress response. SMC-specific Perk deletion also prevents migration of both contractile and modulated SMCs from the medial layer of the aorta.Our results indicate that hypercholesterolemia drives both Perk-dependent and Perk-independent SMC modulation and that deficiency of Perk significantly blocks atherosclerotic plaque formation.
Jarmas, AE;Brunskill, EW;Chaturvedi, P;Salomonis, N;Kopan, R;
PMID: 34732708 | DOI: 10.1038/s41467-021-26626-9
Mammalian nephron endowment is determined by the coordinated cessation of nephrogenesis in independent niches. Here we report that translatome analysis in Tsc1+/- nephron progenitor cells from mice with elevated nephron numbers reveals how differential translation of Wnt antagonists over agonists tips the balance between self-renewal and differentiation. Wnt agonists are poorly translated in young niches, resulting in an environment with low R-spondin and high Fgf20 promoting self-renewal. In older niches we find increased translation of Wnt agonists, including R-spondin and the signalosome-promoting Tmem59, and low Fgf20, promoting differentiation. This suggests that the tipping point for nephron progenitor exit from the niche is controlled by the gradual increase in stability and possibly clustering of Wnt/Fzd complexes in individual cells, enhancing the response to ureteric bud-derived Wnt9b inputs and driving synchronized differentiation. As predicted by these findings, removing one Rspo3 allele in nephron progenitors delays cessation and increases nephron numbers in vivo.
Cellular and molecular gastroenterology and hepatology
Kim, TY;Kim, S;Kim, Y;Lee, YS;Lee, S;Lee, SH;Kweon, MN;
PMID: 34971821 | DOI: 10.1016/j.jcmgh.2021.12.015
Dietary signals are known to modulate stemness and tumorigenicity of intestinal progenitors; however, the impact of a high-fat diet (HFD) on the intestinal stem cell (ISC) niche and its association with colorectal cancer remains unclear. Thus, we aimed to investigate how a HFD affects the ISC niche and its regulatory factors.Mice were fed a purified diet (PD) or HFD for 2 months. The expression levels of ISC-related markers, ISC-supportive signals, and Wnt2b were assessed with real-time quantitative polymerase chain reaction, in situ hybridization, and immunofluorescence staining. RNA sequencing and metabolic function were analyzed in mesenchymal stromal cells (MSCs) from PD- and HFD-fed mice. Fecal microbiota were analyzed by 16s rRNA sequencing. Bile salt hydrolase activity and bile acid (BA) levels were measured.We found that expression of CD44 and Wnt signal-related genes was higher in the colonic crypts of HFD-fed mice than in those fed a PD. Within the ISC niche, MSCs were expanded and secreted predominant levels of Wnt2b in the colon of HFD-fed mice. Of note, increased energy metabolism and cancer-associated fibroblast (CAF)-like properties were found in the colonic MSCs of HFD-fed mice. Moreover, colonic MSCs from HFD-fed mice promoted the growth of tumorigenic properties and accelerated the expression of cancer stem cell (CSC)-related markers in colon organoids. In particular, production of primary and secondary BAs was increased through the expansion of bile salt hydrolase-encoding bacteria in HFD-fed mice. Most importantly, BAs-FXR interaction stimulated Wnt2b production in colonic CAF-like MSCs.HFD-induced colonic CAF-like MSCs play an indispensable role in balancing the properties of CSCs through activation of the BAs-FXR axis.
Arterioscler Thromb Vasc Biol.
Perisic Matic L, Rykaczewska U, Razuvaev A, Sabater-Lleal M, Lengquist M, Miller CL, Ericsson I, Röhl S, Kronqvist M, Aldi S, Magné J, Paloschi V, Vesterlund M, Li Y, Jin H, Diez MG, Roy J, Baldassarre D, Veglia F, Humphries SE, de Faire U, Tremoli E, Ode
PMID: 27470516 | DOI: 10.1161/ATVBAHA.116.307893
Abstract
OBJECTIVE:
Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability.
APPROACH AND RESULTS:
Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P<0.0001) and in rat intimal hyperplasia (r>0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation.
CONCLUSIONS:
We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation.
Piskol R, Huw LY, Sergin I, Klijn C, Modrusan Z, Kim D, Kljavin NM, Tam R, Patel R, Burton J, Penuel E, Qu X, Koeppen H, Sumiyoshi T, de Sauvage FJ, Lackner MR, de Sousa E Melo F, Kabbarah O.
PMID: 31004000 | DOI: 10.1158/1078-0432.CCR-18-3032
Abstract
PURPOSE:
Four consensus molecular subtypes (CMS1-4) of colorectal cancer (CRC) were identified in primary tumors and found to be associated with distinctive biological features and clinical outcomes. Given that distant metastasis largely accounts for CRC-related mortality, we examined the molecular and clinical attributes of CMS in metastatic CRC (mCRC).
EXPERIMENTAL DESIGN:
We developed a CRC-focused Nanostring based CMS classifier that is ideally suited to interrogate archival tissues. We successfully employ this panel in the CMS classification of FFPE tissues from mCRC cohorts, one of which is comprised of paired primary tumors and metastases. Finally, we developed novel mouse implantation models to enable modelling of CRC in vivo at relevant sites.
RESULTS:
Using our classifier we find that the biological hallmarks of mCRC, including CMS, are in general highly similar to those observed in non-metastatic early stage disease. Importantly, our data demonstrate that CMS1 has the worst outcome in relapsed disease, compared to other CMS. Assigning CMS to primary tumors and their matched metastases revealed mostly concordant subtypes between primary and metastasis. Molecular analysis of matched discordant pairs revealed differences in stromal composition at each site. The development of two novel in vivo orthotopic implantation models further reinforces the notion that extrinsic factors may impact on CMS identification in matched primary and metastatic CRC.
CONCLUSION:
We describe the utility of a Nanostring panel for CMS classification of FFPE clinical samples. Our work reveals the impact of intrinsic and extrinsic factors on CRC heterogeneity during disease progression.