Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1414)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (1413)
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (219) Apply RNAscope filter
  • TBD (148) Apply TBD filter
  • RNAscope Multiplex Fluorescent Assay (40) Apply RNAscope Multiplex Fluorescent Assay filter
  • Basescope (10) Apply Basescope filter
  • RNAscope 2.5 HD Brown Assay (9) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Fluorescent Multiplex Assay (9) Apply RNAscope Fluorescent Multiplex Assay filter
  • DNAscope HD Duplex Reagent Kit (8) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope HiPlex v2 assay (7) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.5 HD Duplex (5) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter

Research area

  • Neuroscience (137) Apply Neuroscience filter
  • Cancer (108) Apply Cancer filter
  • Development (55) Apply Development filter
  • Other: Methods (44) Apply Other: Methods filter
  • Inflammation (32) Apply Inflammation filter
  • Infectious (18) Apply Infectious filter
  • HIV (15) Apply HIV filter
  • Pain (14) Apply Pain filter
  • Stem Cells (13) Apply Stem Cells filter
  • HPV (12) Apply HPV filter
  • Other: Neuromuscular Disorders (10) Apply Other: Neuromuscular Disorders filter
  • Other: Heart (9) Apply Other: Heart filter
  • Other: Lung (9) Apply Other: Lung filter
  • CGT (8) Apply CGT filter
  • Covid (8) Apply Covid filter
  • Other: Metabolism (8) Apply Other: Metabolism filter
  • Infectious Disease (7) Apply Infectious Disease filter
  • Stem cell (7) Apply Stem cell filter
  • Immunotherapy (6) Apply Immunotherapy filter
  • Metabolism (6) Apply Metabolism filter
  • Other: Reproduction (6) Apply Other: Reproduction filter
  • Endocrinology (5) Apply Endocrinology filter
  • LncRNAs (5) Apply LncRNAs filter
  • Obesity (5) Apply Obesity filter
  • Reproduction (5) Apply Reproduction filter
  • Aging (4) Apply Aging filter
  • Cystic Fibrosis (4) Apply Cystic Fibrosis filter
  • Heart (4) Apply Heart filter
  • Itch (4) Apply Itch filter
  • lncRNA (4) Apply lncRNA filter
  • Other: Kidney (4) Apply Other: Kidney filter
  • Other: Skin (4) Apply Other: Skin filter
  • Transcriptomics (4) Apply Transcriptomics filter
  • Alzheimer's Disease (3) Apply Alzheimer's Disease filter
  • diabetes (3) Apply diabetes filter
  • Immunology (3) Apply Immunology filter
  • Kidney (3) Apply Kidney filter
  • Memory (3) Apply Memory filter
  • other: Aging (3) Apply other: Aging filter
  • Other: Eyes (3) Apply Other: Eyes filter
  • Other: Gut (3) Apply Other: Gut filter
  • Other: Huntington’s Disease (3) Apply Other: Huntington’s Disease filter
  • Other: Transcriptomics (3) Apply Other: Transcriptomics filter
  • Other: Zoological Disease (3) Apply Other: Zoological Disease filter
  • Psychiatry (3) Apply Psychiatry filter
  • Regeneration (3) Apply Regeneration filter
  • Reproductive Biology (3) Apply Reproductive Biology filter
  • Skin (3) Apply Skin filter
  • Stress (3) Apply Stress filter
  • Tumor microenvironment (3) Apply Tumor microenvironment filter

Category

  • Publications (1414) Apply Publications filter
Pathological diagnosis of Coronavirus-related nephropathy: insight from postmortem studies

Critical reviews in clinical laboratory sciences

2021 Jul 08

Sanguedolce, F;Zanelli, M;Froio, E;Bisagni, A;Zizzo, M;Ascani, S;Stallone, G;Netti, S;Ranieri, E;Falagario, U;Carrieri, G;Cormio, L;
PMID: 34236278 | DOI: 10.1080/10408363.2021.1944047

A novel coronavirus pneumonia first occurred in Wuhan, China in early December 2019; the causative agent was identified and named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the World Health Organization (WHO), and the resulting disease termed coronavirus disease 2019 (COVID-19), according to the WHO coronavirus disease situation reports. This condition has spread rapidly all over the world and caused more than 125 million cases globally, with more than 2 million related deaths. Two previous outbreaks due to zoonotic coronaviruses have occurred in the last 20 years, namely the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV), causing high morbidity and mortality in human populations upon crossing the species barriers. SARS-CoV-2, SARS-CoV, and MERS-CoV show several similarities in pathogenicity and clinical presentations, the latter ranging from asymptomatic infection to severe acute respiratory distress syndrome (ARDS) and multiorgan impairment. Acute kidney injury (AKI) has been commonly reported in patients with CoV infections; therefore, pathological analysis of renal parenchyma in these patients has been carried out in order to improve knowledge about underlying mechanisms. Viral infection has been demonstrated in the renal tubular epithelial cells by electron microscopy (EM), immunohistochemistry (IHC), and in situ hybridization (ISH), although with conflicting results. Light microscopy (LM) changes have been described in the renal parenchyma primarily in the form of acute renal tubular damage, possibly due to direct viral cytopathic effect and immune-mediated mechanisms such as cytokine storm syndrome. In this review, we describe and discuss the spectrum of histological, ultrastructural, and molecular findings in SARS-CoV, MERS-CoV, and SARS-CoV-2-related renal pathology obtained from postmortem studies, as well as intrinsic limitations and pitfalls of current diagnostic techniques.
Monocyte and macrophage derived myofibroblasts: Is it fate? A review of the current evidence

Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society

2021 Jul 01

Vierhout, M;Ayoub, A;Naiel, S;Yazdanshenas, P;Revill, SD;Reihani, A;Dvorkin-Gheva, A;Shi, W;Ask, K;
PMID: 34107123 | DOI: 10.1111/wrr.12946

Since the discovery of the myofibroblast over 50 years ago, much has been learned about its role in wound healing and fibrosis. Its origin, however, remains controversial, with a number of progenitor cells being proposed. Macrophage-myofibroblast transition (MMT) is a recent term coined in 2014 that describes the mechanism through which macrophages, derived from circulating monocytes originating in the bone marrow, transformed into myofibroblasts and contributed to kidney fibrosis. Over the past years, several studies have confirmed the existence of MMT in various systems, suggesting that MMT could potentially occur in all fibrotic conditions and constitute a reasonable therapeutic target to prevent progressive fibrotic disease. In this perspective, we examined recent evidence supporting the notion of MMT in both human disease and experimental models across organ systems. Mechanistic insight from these studies and information from in vitro studies is provided. The findings substantiating plausible MMT showcased the co-expression of macrophage and myofibroblast markers, including CD68 or F4/80 (macrophage) and α-SMA (myofibroblast), in fibroblast-like cells. Furthermore, fate-mapping experiments in murine models exhibiting myeloid-derived myofibroblasts in the tissue further provide direct evidence for MMT. Additionally, we provide some evidence from single cell RNA sequencing experiments confirmed by fluorescent in situ hybridisation studies, showing monocyte/macrophage and myofibroblast markers co-expressed in lung tissue from patients with fibrotic lung disease. In conclusion, MMT is likely a significant contributor to myofibroblast formation in wound healing and fibrotic disease across organ systems. Circulating precursors including monocytes and the molecular mechanisms governing MMT could constitute valid targets and provide insight for the development of novel antifibrotic therapies; however, further understanding of these processes is warranted.
Association of Matrix Metalloproteinase-2 mRNA Expression with Subtypes of Pediatric Cholesteatoma

BioMed research international

2021 Mar 10

Kan, T;Ueda, H;Takahara, T;Tsuchiya, Y;Kishimoto, M;Uchida, Y;Ogawa, T;Ohashi, W;Tsuzuki, T;Fujimoto, Y;
PMID: 33778077 | DOI: 10.1155/2021/6644897

Cholesteatoma is a clinically heterogeneous disease, with some patients showing spontaneous regression, while others experiencing an aggressive, lethal disease. Cholesteatoma in children can be divided into two types: congenital and acquired. Identifying good prognostic markers is needed to help select patients who will require immediate surgical intervention. Matrix metalloproteinase-2 (MMP2) was previously reported to play an important role in cholesteatoma progression, by promoting bone destruction and keratinocyte infiltration. Herein, we analyzed MMP2 mRNA expression level in cholesteatoma using RNA-in situ hybridization in formalin-fixed, paraffin-embedded (FFPE) tissue samples. Sixty patients with cholesteatoma under 15 years old, who underwent their primary surgery at Aichi Medical University's Otolaryngology Department, were analyzed for MMP2 expression level, using RNA-in situ hybridization. There were no significant differences in MMP2 mRNA expression level between congenital cholesteatoma and acquired cholesteatomas. In congenital cholesteatoma, higher MMP2 signals were observed in the open type than in the closed type (p < 0.001). In acquired cholesteatoma, higher MMP2 signals were observed in the pars tensa than in the pars flaccida (p < 0.001). MMP2 mRNA expression level was almost exclusively found in the fibroblasts or in the inflammatory cells in the stroma, but not in the epithelium. Our study reveals that MMP2 mRNA expression level is strongly associated with the subtypes of cholesteatoma. The findings suggest that the level of expression of MMP2 mRNA may be related to the pathogenesis and aggressive features of cholesteatoma.
529: A phase 1b, randomized, double-blind, placebo-controlled, dose-escalation trial of CB-280, an arginase inhibitor, in patients with cystic fibrosis

Journal of Cystic Fibrosis

2021 Nov 01

Boas, S;Donaldson, S;McBennett, K;Liou, T;Howrylak, J;Johnson, L;Teneback, C;Dozor, A;Sawicki, G;Dumlao, J;Pan, A;Akella, L;Zhang, J;Carroll, S;Orford, K;Kuriakose, E;Mermis, J;
| DOI: 10.1016/S1569-1993(21)01953-6

Background: In CF, impaired nitric oxide (NO) production may contribute to impaired host antimicrobial defense, chronic airway infection, and compromised pulmonary function. L-arginine (Arg) is a required substrate of NO synthases for production of NO. Depletion of Arg by arginase, an abundant enzyme expressed and secreted into airways by neutrophils, contributes to NO deficiency. Clinical studies in CF patients have shown that administration of inhaled Arg improved fractional exhaled NO (FeNO) and trended toward improvement in FEV1. CB-280 is a potent, reversible, oral arginase inhibitor that generates sustained increases in systemic Arg. In preclinical studies in CF mouse models, CB-280 improved central airway resistance and decreased lung infection. We present the first 2 doseescalation cohorts of an ongoing phase 1b study of CB-280 versus placebo in adults with CF (NCT04279769; CX-280-202). Methods: Patients were randomized 3:1 to receive CB-280 or placebo orally over 14 days in 4 sequential dose-escalation cohorts (50, 100, 200, 400 mg twice a day; n = 8/cohort). Primary endpoint was safety and tolerability, as assessed by adverse events (AEs), laboratory changes, ECG, and spirometry. Results: Results are presented for 16 patients from the first 2 cohorts (n = 6 in 50-mg cohort, n = 6 in 100-mg cohort, n = 4 placebo). Median age was 31.5 and 69% were female. Median baseline ppFEV1 was 65%; 86% of patients were on elexacaftor/tezacaftor/ivacaftor at study entry. Treatmentemergent AEs occurred in 3 of 12 patients treated with CB-280 and 1 of 4 patients on placebo. Treatment-related AEs in CB-280-treated patients included Grade 1/2 dizziness and acne. No Grade 3 or greater events; doselimiting toxicities; serious AEs; or major adverse changes on lab assessments, ECG, or vital signs occurred in CB-280 patients. Spirometry showed no safety problems, and there was a positive trend in ppFEV1 with CB-280. CB-280 exhibited linear pharmacokinetics. Steady-state Ctrough at the 100-mg dose surpassed the IC90 for arginase inhibition in plasma, indicating continuous target coverage. Dose-related increases in plasma Arg were observed, with a mean 1.9-fold increase at the 100-mg dose. FeNO showed a slightly positive trend from baseline for patients on CB-280. Updated data will be presented. Conclusion: In conclusion, CB-280 was well tolerated in the initial dose cohorts of this study, with no CB-280 patients experiencing dose-limiting toxicities. CB-280 exhibited linear pharmacokinetics, achieving continuous target coverage in plasma at the 100-mg dose, and trended favorably in FEV1 and FeNO parameters.
Genetic Deletion of the Prostaglandin EP3 Receptor in the Kidney Tubule of Adult Mice Has No Impact on Kidney Water Handling

The FASEB Journal

2021 Jan 01

Esteva‐Font, C;Krogager, T;Hoorn, E;Fenton, R;
| DOI: 10.1096/fasebj.2021.35.S1.00332

Prostaglandin E2 (PGE2) is an important lipid mediator modulating various aspects of kidney function. PGE2 exerts its effects via four PGE2 receptors, EP1-EP4. The EP3 receptor is expressed in the thick ascending limb (TAL) and the collecting duct, where it is proposed to inhibit cAMP generation and NaCl and water reabsorption. However, EP3 is also expressed in endothelial cells of arteries and arterioles, which also play a role in kidney function. Therefore, to assess the tubular role of EP3 in adult mice we generated a mouse model based on the Pax8Cre system with doxycycline-dependent deletion of EP3 along the renal tubule and assessed their renal phenotype in respect to water handling. RNAscope confirmed that EP3 was highly expressed in cortical and medullary TAL and collecting ducts, but it was non-detected in proximal tubule and thin limbs. Two weeks after treatment with doxycycline, EP3 mRNA expression was reduced by >80% in whole kidney (RT-q-PCR) and non-detectable (RNAscope) in tubules of knockout mice compared to control mice. There were no compensatory changes in other EP receptors. Under basal conditions, there were no significant differences in food and water intake, bodyweight, urinary output or plasma and urine biochemistries in both male or female control and knockout mice. There were no differences between genotypes in their renal handling of water during an acute water load, or in their response to the vasopressin V2 receptor agonist dDAVP. Rats drinking 1% NaCl for several days in combination with an EP3 antagonist have increased urine output (Hao et al., 2016). However, relative to controls, we could not detect significant differences in urine volume or osmolality in tubular EP3 knockout mice during 1% NaCl intake. In conclusion, EP3 in the renal tubule is not important for renal water handling or compensatory mechanisms exist. This new model provides a novel tool for examination of the role of EP3 in other aspects of renal function or kidney disease independently of potential developmental abnormalities or systemic effects.
RF10 | PMON205 LH/CG Receptor Activation Protects Mice from Diet-Induced Obesity and Modifies Adipose Tissue Immune Response

Journal of the Endocrine Society

2022 Nov 01

Lizneva, D;Ievleva, K;Gumerova, A;Shelly, E;Korkmaz, F;Muradova, V;Netto, J;Kuo, T;Sultana, F;Kumar, P;Kramskiy, N;Ryu, V;Padilla, A;Hutchison, S;Yuen, T;Zaidi, M;
| DOI: 10.1210/jendso/bvac150.058

Menopause is associated with the loss of LH ovulatory surges and enhanced visceral adiposity. Visceral fat depots increase from 5-8% at premenopause to 15-20% of total body fat at postmenopause. Here, we report that high-dose LH, hCG, or small molecule LH/CGR agonist ORG43553 injected twice-a-week into 14-weeks-old C57BL/6 male mice protects them from diet-induced obesity. Testosterone levels were elevated in mice treated with LH or hCG, but not with ORG43553. Notably, the anti-obesity action of LH/hCG is independent of testosterone, as blocking the androgen receptor using flutamide yielded similar results. Importantly, male Lhcgr knockout mice on a high-fat diet treated with LH failed to display a reduction in adiposity, confirming the in vivo specificity of action. Furthermore, our data phenocopied Lhcgr haploinsufficiency in mice. We confirmed the presence of Lhcgr in mouse genital and inguinal fat pads, adipose-derived stromal vascular cells, as well as in differentiated and undifferentiated 3T3-L1 murine adipocytes by qPCR, RNAscope in situ hybridization, and immunohistochemistry. Sanger sequencing showed that the extracellular domain of Lhcgr in genital fat depot was identical to the ovarian receptor. Similarly, we identified LHCGR in human subcutaneous and visceral fat depots. Binding of intraperitoneally injected AlexaFluor-488-labeled hCG was found not only in mouse ovary, but also in genital and subcutaneous fat pad, further confirming the presence of LHCGR in adipose tissue. This binding could be competitively displaced in 3T3-L1 cells using unlabeled hCG. LH, hCG and ORG43553 activated ERK1/2 in a dose-dependent manner in undifferentiated and differentiated 3T3-L1 cells, suggesting that the adipose LHCGR is fully functional. LH, hCG, and ORG43553 reduced adipogenic differentiation in 3T3-L1 cells, which is further confirmed by RNA sequencing. Moreover, we observed, that LH and hCG also alters several aspects of immune response in adipose tissue, including inflammatory response and adaptive immunity. In conclusion, we demonstrated that LH/CG receptors are present and fully functional in adipose tissue, and that high-dose intermittent activation of LHCGR in mouse fat depots protects mice from diet-induced obesity and modifies adipose tissue immune response. Presentation: Saturday, June 11, 2022 1:42 p.m. - 1:47 p.m., Monday, June 13, 2022 12:30 p.m. - 2:30 p.m.
The intestinal γδ T cells: functions in the gut and in the distant organs

Frontiers in Immunology

2023 Jun 16

Li, G;Xia, J;Zeng, W;Luo, W;Liu, L;Zeng, X;Cao, D;
| DOI: 10.3389/fimmu.2023.1206299

Located in the frontline against the largest population of microbiota, the intestinal mucosa of mammals has evolved to become an effective immune system. γδ T cells, a unique T cell subpopulation, are rare in circulation blood and lymphoid tissues, but rich in the intestinal mucosa, particularly in the epithelium. Via rapid production of cytokines and growth factors, intestinal γδ T cells are key contributors to epithelial homeostasis and immune surveillance of infection. Intriguingly, recent studies have revealed that the intestinal γδ T cells may play novel exciting functions ranging from epithelial plasticity and remodeling in response to carbohydrate diets to the recovery of ischemic stroke. In this review article, we update regulatory molecules newly defined in lymphopoiesis of the intestinal γδ T cells and their novel functions locally in the intestinal mucosa, such as epithelial remodeling, and distantly in pathological setting, e.g., ischemic brain injury repair, psychosocial stress responses, and fracture repair. The challenges and potential revenues in intestinal γδ T cell studies are discussed.
Examining Neuronal Subtype-Specific Genes Downregulated in Schizophrenia (SCZ) Using RNAscope in the Dorso-Lateral Prefrontal Cortex (DLPFC)

Biological Psychiatry

2021 May 01

Kim, D;Jambhale, A;Kim, P;Kim, B;Lipska, B;Auluck, P;Marenco, S;
| DOI: 10.1016/j.biopsych.2021.02.630

Background Bulk tissue RNA-sequencing studies in human post-mortem brains have reported differentially expressed genes between patients with Schizophrenia (SCZ) and controls. Single-nucleus RNA-sequencing data indicate that genes downregulated in SCZ were particularly enriched in a sub-population of excitatory neurons (Ex21) indexed by SMYD1 gene. POSTN and NR4A2 are two genes highly specific to Ex21 and significantly downregulated in SCZ. We hypothesized that either the number of Ex21 cells or the expression of POSTN and NR4A2 within them would be reduced in SCZ vs. controls. Methods We conducted a RNAscope in situ hybridization study in 20 SCZ and 20 controls. Three sections of the DLPFC per individual were stained for SMYD1 and NR4A2, and another three for SMYD1 and POSTN, using the colorimetric version of RNAscope (240 sections). Each RNAscope slide was counterstained using hematoxylin/eosin. Additional sections were stained with NeuN to assess neuronal numbers. Results ANCOVA revealed that there were no significant differences between SCZ and controls in the proportion of Ex21 (SMYD1+) cells (p = 0.40 for POSTN dataset, 0.36 for NR4A2 dataset), or the expression of marker and target genes within SMYD1+ cells in the DLPFC (p = 0.86 for POSTN dataset, p = 0.15 for NR4A2 dataset). Conclusions These results contradict prior conclusions that both POSTN and NR4A2 are downregulated in SCZ, but the modest sample size and several methodological issues suggest caution in interpreting these results.
Somatosensory neurons express specific sets of lincRNAs, and lincRNA CLAP promotes itch sensation in mice

EMBO reports

2022 Dec 16

Wang, B;Jiang, B;Li, GW;Dong, F;Luo, Z;Cai, B;Wei, M;Huang, J;Wang, K;Feng, X;Tong, F;Wang, S;Wang, Q;Han, Q;Li, C;Zhang, X;Yang, L;Bao, L;
PMID: 36524339 | DOI: 10.15252/embr.202154313

Somatosensory neurons are highly heterogeneous with distinct types of neural cells responding to specific stimuli. However, the distribution and roles of cell-type-specific long intergenic noncoding RNAs (lincRNAs) in somatosensory neurons remain largely unexplored. Here, by utilizing droplet-based single-cell RNA-seq (scRNA-seq) and full-length Smart-seq2, we show that lincRNAs, but not coding mRNAs, are enriched in specific types of mouse somatosensory neurons. Profiling of lincRNAs from single neurons located in dorsal root ganglia (DRG) identifies 200 lincRNAs localized in specific types or subtypes of somatosensory neurons. Among them, the conserved cell-type-specific lincRNA CLAP associates with pruritus and is abundantly expressed in somatostatin (SST)-positive neurons. CLAP knockdown reduces histamine-induced Ca2+ influx in cultured SST-positive neurons and in vivo reduces histamine-induced scratching in mice. In vivo knockdown of CLAP also decreases the expression of neuron-type-specific and itch-related genes in somatosensory neurons, and this partially depends on the RNA binding protein MSI2. Our data reveal a cell-type-specific landscape of lincRNAs and a function for CLAP in somatosensory neurons in sensory transmission.
Evidence for Clonal Proliferation of Smooth Muscle Cells in Unstable Human Atherosclerotic Lesions

Circulation

2022 Jan 01

Kawai, K;Sakamoto, A;Mokry, M;Ghosh, S;Xu, W;
| DOI: 10.1161/circ.146.suppl_1.15249

Background: Studies using techniques that relied on expression of an X-linked gene suggested predominant clones of smooth muscle cells (SMC) may exist in human atherosclerosis. These studies were limited by spatial resolution and nature of plaque types studied. We investigated whether clones of SMCs exist in unstable human atheroma. Methods and Results: We used a 25 nucleotide deletion in the 3’ UTR of the BGN gene, highly expressed by SMC and prevalent in 30% of females, to study clonal proliferation. Three different types of plaques (erosion, rupture, and adaptive intimal thickening) were selected from females heterozygous for the deletion mutant. Hybridization of target RNA-specific BaseScope probes was conducted to visualize the distribution of mutants and images displayed as a bubble plots. Clonality index was calculated as the percentage of each probe in each ROI. A clonality index equal to or exceeding the three times the standard deviation above the mean of the clonality index of the media in all plaques was considered clonal. In comparing clonality between media and intima, the mean percent ROI with clonality was significantly higher in the intima than in the media (42.3±18.2 vs 18.3±9.6%, P=0.003) and this was consistent for both eroded (27.0±9.8 vs 9.0±3.8%, P=0.04) and ruptured plaques (41.3±10.7 vs 20.0±3.5%, P=0.03). The relationship of dominant clone in the intima and media shows significant concordance in the majority of plaques studied (R=0.72, P
Implications of microglial heterogeneity in spinal cord injury progression and therapy

Experimental neurology

2022 Oct 07

Fang, YP;Qin, ZH;Zhang, Y;Ning, B;
PMID: 36216123 | DOI: 10.1016/j.expneurol.2022.114239

Microglia are widely distributed in the central nervous system (CNS), where they aid in the maintenance of neuronal function and perform key auxiliary roles in phagocytosis, neural repair, immunological control, and nutrition delivery. Microglia in the undamaged spinal cord is in a stable state and serve as immune monitors. In the event of spinal cord injury (SCI), severe changes in the microenvironment and glial scar formation lead to axonal regeneration failure. Microglia participates in a series of pathophysiological processes and behave both positive and negative consequences during this period. A deep understanding of the characteristics and functions of microglia can better identify therapeutic targets for SCI. Technological innovations such as single-cell RNA sequencing (Sc-RNAseq) have led to new advances in the study of microglia heterogeneity throughout the lifespan. Here,We review the updated studies searching for heterogeneity of microglia from the developmental and pathological state, survey the activity and function of microglia in SCI and explore the recent therapeutic strategies targeting microglia in the CNS injury.
Ebola virus persistence and disease recrudescence in the brains of antibody-treated nonhuman primate survivors

Science translational medicine

2022 Feb 09

Liu, J;Trefry, JC;Babka, AM;Schellhase, CW;Coffin, KM;Williams, JA;Raymond, JLW;Facemire, PR;Chance, TB;Davis, NM;Scruggs, JL;Rossi, FD;Haddow, AD;Zelko, JM;Bixler, SL;Crozier, I;Iversen, PL;Pitt, ML;Kuhn, JH;Palacios, G;Zeng, X;
PMID: 35138912 | DOI: 10.1126/scitranslmed.abi5229

Effective therapeutics have been developed against acute Ebola virus disease (EVD) in both humans and experimentally infected nonhuman primates. However, the risk of viral persistence and associated disease recrudescence in survivors receiving these therapeutics remains unclear. In contrast to rhesus macaques that survived Ebola virus (EBOV) exposure in the absence of treatment, we discovered that EBOV, despite being cleared from all other organs, persisted in the brain ventricular system of rhesus macaque survivors that had received monoclonal antibody (mAb) treatment. In mAb-treated macaque survivors, EBOV persisted in macrophages infiltrating the brain ventricular system, including the choroid plexuses. This macrophage infiltration was accompanied by severe tissue damage, including ventriculitis, choroid plexitis, and meningoencephalitis. Specifically, choroid plexus endothelium-derived EBOV infection led to viral persistence in the macaque brain ventricular system. This resulted in apoptosis of ependymal cells, which constitute the blood-cerebrospinal fluid barrier of the choroid plexuses. Fatal brain-confined recrudescence of EBOV infection manifested as severe inflammation, local pathology, and widespread infection of the ventricular system and adjacent neuropil in some of the mAb-treated macaque survivors. This study highlights organ-specific EBOV persistence and fatal recrudescent disease in rhesus macaque survivors after therapeutic treatment and has implications for the long-term follow-up of human survivors of EVD.

Pages

  • « first
  • ‹ previous
  • …
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?