Cold Spring Harbor perspectives in biology
Ganier, C;Rognoni, E;Goss, G;Lynch, M;Watt, FM;
PMID: 35667795 | DOI: 10.1101/cshperspect.a041238
Fibroblasts are the main cell type in the dermis. They are responsible for the synthesis and deposition of structural proteins such as collagen and elastin, which are integrated into the extracellular matrix (ECM). Mouse and human studies using flow cytometry, cell culture, skin reconstitution, and lineage tracing experiments have shown the existence of different subpopulations of fibroblasts, including papillary fibroblasts, reticular fibroblasts, and fibroblasts comprising the dermal papilla at the base of the hair follicle. In recent years, the technological advances in single-cell sequencing have allowed researchers to study the repertoire of cells present in full-thickness skin including the dermis. Multiple groups have confirmed that distinct fibroblast populations can be identified in mouse and human dermis on the basis of differences in the transcriptional profile. Here, we discuss the current state of knowledge regarding dermal fibroblast heterogeneity in healthy mouse and human skin, highlighting the similarities and differences between mouse and human fibroblast subpopulations. We also discuss how fibroblast heterogeneity may provide insights into physiological wound healing and its dysfunction in pathological states such as hypertrophic and keloid scars.
May-Zhang, AA;Benthal, JT;Southard-Smith, EM;
PMID: 35612422 | DOI: 10.1002/cpz1.439
In situ hybridization has been a robust method for detection of mRNA expression in whole-mount samples or tissue sections for more than 50 years. Recent technical advances for in situ hybridization have incorporated oligo-based probes that attain greater tissue penetration and signal amplification steps with restricted localization for visualization of specific mRNAs within single cells. One such method is third-generation in situ hybridization chain reaction (V3HCR). Here, we report an optimized protocol for V3HCR detection of gene expression using sectioned frozen tissues from mouse and human on microscope slides. Our methods and modifications for cryosectioning, tissue fixation, and processing over a three-day V3HCR protocol are detailed along with recommendations for aliquoting and storing V3HCR single-stranded DNA probes and hairpin amplifiers. In addition, we describe a method for blocking background signal from lipofuscin, a highly autofluorescent material that is widespread in human neurons and often complicates imaging efforts. After testing multiple strategies for reduction of lipofuscin, we determined that application of a lipofuscin quencher dye is compatible with V3HCR, in contrast to other methods like cupric sulfate quenching or Sudan Black B blocking that cause V3HCR signal loss. This adaptation enables application of V3HCR for in situ detection of gene expression in human neuronal populations that are otherwise problematic due to lipofuscin autofluorescence.
Anatomical science international
Fujikawa, K;Nonaka, N;Wang, X;Shibata, S;
PMID: 35119611 | DOI: 10.1007/s12565-022-00647-w
Expression of syndecan-1, 2, 3, and 4 mRNAs during the late stages of tooth germ formation was investigated by in situ hybridization, using [35S]-UTP-labeled cRNA probes. Syndecan-1 mRNA was mainly expressed in the stellate reticulum and stratum intermedium as well as at the cervical region of dental papilla/dental follicle during E18.5-P3.0. Expression in the dental epithelium was enhanced during the postnatal periods, which was supported by real-time RT-PCR analysis. These spatiotemporal expression patterns may suggest specific roles of syndecan-1 in tooth formation such as tooth eruption or root formation. Syndecan-3 mRNA expression became evident in odontoblasts at E18.5, but compared to collagen type I mRNA, which was strongly expressed at this stage, syndecan-3 expression in odontoblast was restricted in mature odontoblasts beneath the cusps during the postnatal periods. This result was also supported by real-time RT-PCR analysis, and indicated that syndecan-3 may be involved in the progress of dentinogenesis rather than in the initiation of it. Syndecan-4 mRNA roughly showed comparable expression patterns to those of syndecan-3. Syndecan-2 mRNA did not show significant expression during the experimental period, but real-time RT-PCR analysis suggested that syndecan-2 expression might be enhanced with hard tissue formation.
Li, J;Hu, ZQ;Yu, S;Mao, L;Zhou, Z;Wang, P;Gong, Y;Su, S;Zhou, J;Fan, J;Zhou, SL;Huang, X;
PMID: 35045986 | DOI: 10.1158/0008-5472.CAN-21-1259
Although circular RNAs (circRNA) are known to modulate tumor initiation and progression, their role in hepatocellular carcinoma (HCC) metastasis remains poorly understood. Here, three metastasis-associated circRNAs identified in a previous circRNA-sequencing study were screened and validated in two HCC cohorts. CircRPN2 was downregulated in highly metastatic HCC cell lines and HCC tissues with metastasis. HCC patients with lower circRPN2 levels displayed shorter overall survival and higher rates of cumulative recurrence. Mechanistic studies in vitro and in vivo revealed that circRPN2 binds to enolase 1 (ENO1) and accelerates its degradation to promote glycolytic reprogramming through the AKT/mTOR pathway, thereby inhibiting HCC metastasis. CircRPN2 also acted as a competing endogenous RNA for miR-183-5p, which increases forkhead box protein O1 (FOXO1) expression to suppress glucose metabolism and tumor progression. In clinical samples, circRPN2 expression negatively correlated with ENO1 and positively correlated with FOXO1, and expression of circRPN2, either alone or in combination with ENO1 and FOXO1, was a novel indicator of HCC prognosis. These data support a model wherein circRPN2 inhibits HCC aerobic glycolysis and metastasis via acceleration of ENO1 degradation and regulation of the miR-183-5p/FOXO1 axis, suggesting that circRPN2 represents a possible therapeutic target in HCC.
Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]
Molossi, FA;de Almeida, BA;de Cecco, BS;da Silva, MS;Mósena, ACS;Brandalise, L;Simão, GMR;Canal, CW;Vanucci, F;Pavarini, SP;Driemeier, D;
PMID: 34988935 | DOI: 10.1007/s42770-021-00644-7
Porcine circovirus type 3 (PCV3) is widely distributed worldwide, and its association with clinical disease in pigs has been studied in recent years. This study describes a novel PCV3-associated clinical disease in piglets from Brazil. Since September 2020, we received 48 piglets with large caudally rotated ears, weakness, and dyspnea. Most piglets were from gilts and died 1-5 days after birth. Two piglets that presented similar clinical signs and survived until 35-60 days had a marked decrease in growth rate. At post-mortem examination, the lungs did not collapse due to marked interlobular edema. Microscopically, the main feature was multisystemic vasculitis characterized by lymphocytes and plasma cells infiltrating and disrupting the wall of vessels, lymphohistiocytic interstitial pneumonia, myocarditis, and encephalitis. Viral replication was confirmed in these lesions through in situ hybridization (ISH-RNA). Seventeen cases were positive for PCV3 in PCR analysis, and all samples tested negative for porcine circovirus (PCV1, and PCV2); porcine parvovirus (PPV1, 2, 5, and 6); atypical porcine pestivirus (APPV); porcine reproductive and respiratory syndrome (PRRSV); and ovine herpesvirus-2 (OvHV-2). Phylogenetic analysis of the ORF2 sequence from five different pig farms showed that the PCV3a clade is circulating among Brazil's swineherds and causing neonatal piglet losses. This is the first report of PCV3a-associated disease in neonatal pigs from farms in Brazil.
Cong, Q;Soteros, BM;Huo, A;Li, Y;Tenner, AJ;Sia, GM;
PMID: 34762332 | DOI: 10.1002/glia.24114
The classical complement cascade mediates synapse elimination in the visual thalamus during early brain development. However, whether the primary visual cortex also undergoes complement-mediated synapse elimination during early visual system development remains unknown. Here, we examined microglia-mediated synapse elimination in the visual thalamus and the primary visual cortex of early postnatal C1q and SRPX2 knockout mice. In the lateral geniculate nucleus, deletion of C1q caused a persistent decrease in synapse elimination and microglial synapse engulfment, while deletion of SRPX2 caused a transient increase in the same readouts. In the C1q-SRPX2 double knockout mice, the C1q knockout phenotypes were dominant over the SRPX2 knockout phenotypes, a result which is consistent with SRPX2 being an inhibitor of C1q. We found that genetic deletion of either C1q or SRPX2 did not affect synapse elimination or microglial engulfment of synapses in layer 4 of the primary visual cortex in early brain development. Together, these results show that the classical complement pathway regulates microglia-mediated synapse elimination in the visual thalamus but not the visual cortex during early development of the central nervous system.
The Journal of investigative dermatology
Shang, W;Quan Tan, AY;van Steensel, MAM;Lim, X;
PMID: 34929175 | DOI: 10.1016/j.jid.2021.11.034
Stem cell proliferation and differentiation must be carefully balanced to support tissue maintenance and growth. Defective stem cell regulation may underpin diseases in many organs, including the skin. Lrig1-expressing stem cells residing in the HF junction zone (JZ) support sebaceous gland (SG) homeostasis. An emerging hypothesis from observations in both mouse and human holds that imbalances in key stem cell regulatory pathways such as Wnt signaling may lead to abnormal fate determination of these Lrig1+ve cells. They accumulate and form cystic structures in the JZ that are similar to the comedones found in human acne. To test the possible involvement of Wnt signals in this scenario, we used the Lrig1-CreERT2 mouse line to modulate Wnt signaling in JZ stem cells. We observed that persistent activation of Wnt signaling leads to JZ cyst formation with associated SG atrophy. The cysts strongly express stem cell markers and can be partially reduced by all-trans retinoic acid treatment as well as by Hedgehog signaling inhibition. Conversely, loss of Wnt signaling leads to enlargement of JZ, infundibulum and SGs. These data implicate abnormal Wnt signaling in the generation of mouse pathologies that resemble human acne and respond to acne treatments.
Shi, L;Racedo, SE;Diacou, A;Park, T;Zhou, B;Morrow, BE;
PMID: 34686881 | DOI: 10.1093/hmg/ddab313
CRK and CRKL encode cytoplasmic adaptors that contribute to the etiology of congenital heart disease. Neural crest cells (NCCs) are required for cardiac outflow tract (OFT) septation and aortic arch formation. The roles of Crk/Crkl in NCCs during mouse cardiovascular development remains unknown. To test this, we inactivated Crk and/or Crkl in NCCs. We found that the loss of Crk, rather than Crkl, in NCCs resulted in double outlet right ventricle, while loss of both Crk/Crkl in NCCs resulted in severe defects with earlier lethality due to failed OFT septation and severe dilation of the pharyngeal arch arteries (PAAs). We found that these defects are due to altered cell morphology resulting in reduced localization of NCCs to the OFT and failed integrity of the PAAs, along with reduced expression of Integrin signaling genes. Further, molecular studies identified reduced differentiation of vascular smooth muscle cells that may in part be due to altered Notch signaling. Additionally, there is increased cellular stress that leads to modest increase in apoptosis. Overall, this explains the mechanism for the Crk/Crkl phenotype.
TNF-Related Apoptosis-Inducing Ligand (TRAIL) Loss in Canine Mammary Carcinoma
Veterinary and comparative oncology
Kim, SH;Seung, BJ;Bae, MK;Lim, HY;Cho, SH;Sur, JH;
PMID: 34423555 | DOI: 10.1111/vco.12767
Escaping apoptosis is a hallmark of cancer. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a central molecule that regulates the extrinsic apoptotic pathway, has been widely investigated in human oncology; however, investigations focusing on the endogenous expression of TRAIL in canine tumors are lacking. Therefore, we aimed to examine the expression of endogenous TRAIL in canine mammary tumors and analyzed its correlation to downstream molecules Fas-associated death domain protein (FADD) and caspase-3, and to the apoptotic index. A total of 147 samples, classified as normal mammary gland (n = 9), mammary adenoma (n = 30), low-grade carcinoma (n = 42), and high-grade carcinoma (n = 66) were included in the immunohistochemical analyses, and 43 samples with sufficient levels of RNA were analyzed via RNA in situ hybridization and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. In immunohistochemistry, TRAIL protein expression was significantly decreased in high-grade carcinoma compared to those in normal mammary gland and adenoma, with similar downregulation of TRAIL mRNA expression. Also, FADD and caspase-3 expression positively correlated with TRAIL expression. However, the apoptotic index was paradoxically elevated in high-grade tumors. Overall, these results suggest that loss of TRAIL accompanied by dysregulation of TRAIL-induced extrinsic apoptotic pathway molecules could affect malignant progression of canine mammary tumors.This article is protected by
Localization and genotyping of canine papillomavirus in canine inverted papillomas
Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc
Orlandi, M;Mazzei, M;Vascellari, M;Melchiotti, E;Zanardello, C;Verin, R;Albanese, F;Necci, F;Pazzini, L;Lazzarini, G;Abramo, F;
PMID: 34338089 | DOI: 10.1177/10406387211035799
Numerous canine papillomaviruses (CPVs) have been identified (CPV1-23). CPV1, 2, and 6 have been associated with inverted papillomas (IPs). We retrieved 19 IPs from 3 histopathology archives, and evaluated and scored koilocytes, inclusion bodies, giant keratohyalin granules, cytoplasmic pallor, ballooning degeneration, and parakeratosis. IHC targeting major capsid proteins of PV was performed, and CPV genotyping was achieved by PCR testing. Tissue localization of CPV DNA and RNA was studied by chromogenic and RNAscope in situ hybridization (DNA-CISH, RNA-ISH, respectively). IPs were localized to the limbs (50%), trunk (30%), and head (20%), mainly as single nodules (16 of 19). In 15 of 19 cases, immunopositivity was detected within the nuclei in corneal and subcorneal epidermal layers. PCR revealed CPV1 in 11 IPs and CPV2 DNA in 3 IPs. Overall, 14 of 17 cases were positive by both DNA-CISH and RNA-ISH, in accord with PCR results. A histologic score >5 was always obtained in cases in which the viral etiology was demonstrated by IHC, DNA-CISH, and RNA-ISH. IHC and molecular approaches were useful to ascertain the viral etiology of IPs. Although IHC is the first choice for diagnostic purposes, ISH testing allows identification of PV type and the infection phase. RNA-ISH seems a promising tool to deepen our understanding of the pathogenesis of different PV types in animal species.
FGFR signaling and endocrine resistance in breast cancer: Challenges for the clinical development of FGFR inhibitors
Biochimica et biophysica acta. Reviews on cancer
Servetto, A;Formisano, L;Arteaga, CL;
PMID: 34303787 | DOI: 10.1016/j.bbcan.2021.188595
Fibroblast growth factors (FGFs) and their receptors (FGFRs) have been extensively investigated in solid malignancies, representing an attractive therapeutic target. In breast cancer, especially in estrogen receptor positive (ER+) subtype, FGFR signaling aberrations have been reported to contribute to proliferation, dedifferentiation, metastasis and drug resistance. However, clinical trials evaluating the use of FGFR inhibitors in breast cancer have had disappointing results. The different biological properties of distinct FGFR alterations and lack of established patient selection criteria, in addition to the early use of non-selective inhibitors, are possible reasons of this failure. Herein, we review the current knowledge regarding the role of FGFR signaling in endocrine resistance in breast cancer. We will also summarize the results from the clinical development of FGFR inhibitors in breast cancer, discussing future challenges to identify the correct cohorts of patients to enroll in trials testing FGFR inhibitors.
ORAL MUCOSAL LESIONS IN PATIENTS FROM CLINICS OF THE SCHOOL OF DENTISTRY, UNIVERSITY OF ANTIOQUIA, MEDELLÍN, COLOMBIA
Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology
Álvarez Gómez, G;Rodríguez Montoya, G;López, A;Saldarriaga, A;Alzate, M;Muñoz, L;
| DOI: 10.1016/j.oooo.2021.03.039
Background To our knowledge, there are no studies in Colombia that describe the frequency of oral mucosal lesions. Only the ENSAB IV evaluated potentially malignant lesions and lesions associated with a removable prosthesis. Objective The aim of this study was to determine the frequency of oral mucosal lesions and their risk indicators in patients attending clinics of the School of Dentistry, University of Antioquia. Methods Structured interviews, clinical examination, and a biopsy, if deemed necessary, were conducted in a nonprobabilistic sample of 539 patients. Results Eight hundred forty mucosal lesions were found in 409 patients (75.9%). The average age was 35.26 years (SD = 23.4); 69.7% of patients were female. The most frequent lesions were exfoliative cheilitis (17.4%), frictional keratosis (15.4%), and vascular lesions (11.5%). In exploring the relationship between the number of lesions and sociodemographic characteristics and habits, a correlation was found with age (P = .001), use of removable appliances (P = .042), type of appliance (P = .001), and the variable “you have seen or felt something in your mouth” (P = .004). Conclusions The most frequent lesions in this study were exfoliative cheilitis. There was a low percentage of potentially malignant disorders, and no malignant lesions were found. In the teaching programs of dentistry and even to establish the diagnosis of presumption, it is necessary to know the frequency of lesions of the oral mucosa in the region.