Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1414)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (1413)
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (219) Apply RNAscope filter
  • TBD (148) Apply TBD filter
  • RNAscope Multiplex Fluorescent Assay (40) Apply RNAscope Multiplex Fluorescent Assay filter
  • Basescope (10) Apply Basescope filter
  • RNAscope 2.5 HD Brown Assay (9) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Fluorescent Multiplex Assay (9) Apply RNAscope Fluorescent Multiplex Assay filter
  • DNAscope HD Duplex Reagent Kit (8) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope HiPlex v2 assay (7) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.5 HD Duplex (5) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter

Research area

  • Neuroscience (137) Apply Neuroscience filter
  • Cancer (108) Apply Cancer filter
  • Development (55) Apply Development filter
  • Other: Methods (44) Apply Other: Methods filter
  • Inflammation (32) Apply Inflammation filter
  • Infectious (18) Apply Infectious filter
  • HIV (15) Apply HIV filter
  • Pain (14) Apply Pain filter
  • Stem Cells (13) Apply Stem Cells filter
  • HPV (12) Apply HPV filter
  • Other: Neuromuscular Disorders (10) Apply Other: Neuromuscular Disorders filter
  • Other: Heart (9) Apply Other: Heart filter
  • Other: Lung (9) Apply Other: Lung filter
  • CGT (8) Apply CGT filter
  • Covid (8) Apply Covid filter
  • Other: Metabolism (8) Apply Other: Metabolism filter
  • Infectious Disease (7) Apply Infectious Disease filter
  • Stem cell (7) Apply Stem cell filter
  • Immunotherapy (6) Apply Immunotherapy filter
  • Metabolism (6) Apply Metabolism filter
  • Other: Reproduction (6) Apply Other: Reproduction filter
  • Endocrinology (5) Apply Endocrinology filter
  • LncRNAs (5) Apply LncRNAs filter
  • Obesity (5) Apply Obesity filter
  • Reproduction (5) Apply Reproduction filter
  • Aging (4) Apply Aging filter
  • Cystic Fibrosis (4) Apply Cystic Fibrosis filter
  • Heart (4) Apply Heart filter
  • Itch (4) Apply Itch filter
  • lncRNA (4) Apply lncRNA filter
  • Other: Kidney (4) Apply Other: Kidney filter
  • Other: Skin (4) Apply Other: Skin filter
  • Transcriptomics (4) Apply Transcriptomics filter
  • Alzheimer's Disease (3) Apply Alzheimer's Disease filter
  • diabetes (3) Apply diabetes filter
  • Immunology (3) Apply Immunology filter
  • Kidney (3) Apply Kidney filter
  • Memory (3) Apply Memory filter
  • other: Aging (3) Apply other: Aging filter
  • Other: Eyes (3) Apply Other: Eyes filter
  • Other: Gut (3) Apply Other: Gut filter
  • Other: Huntington’s Disease (3) Apply Other: Huntington’s Disease filter
  • Other: Transcriptomics (3) Apply Other: Transcriptomics filter
  • Other: Zoological Disease (3) Apply Other: Zoological Disease filter
  • Psychiatry (3) Apply Psychiatry filter
  • Regeneration (3) Apply Regeneration filter
  • Reproductive Biology (3) Apply Reproductive Biology filter
  • Skin (3) Apply Skin filter
  • Stress (3) Apply Stress filter
  • Tumor microenvironment (3) Apply Tumor microenvironment filter

Category

  • Publications (1414) Apply Publications filter
FoxL1+ mesenchymal cells are a critical source of Wnt5a for midgut elongation during mouse embryonic intestinal development

Cells and Development

2021 Mar 01

Kondo, A;Kaestner, K;
| DOI: 10.1016/j.cdev.2021.203662

Wnt5a is a non-canonical Wnt ligand that is essential for normal embryonic development in mammals. The role of Wnt5a in early intestinal development has been examined in gene ablation models, where _Wnt5a__−/−_ mice exhibit strikingly shortened intestines. However, the exact cellular source of Wnt5a has remained elusive, until a recent study found that FoxL1-expressing mesenchymal cells (FoxL1+ cells), which are localized directly beneath the intestinal epithelium, express Wnt5a. To determine whether FoxL1+ cells are a required source of Wnt5a during intestinal development, we derived _FoxL1-Cre; Wnt5a__f/f_ mice, which is the first mouse model to ablate Wnt5a in a cell type-specific manner in the intestine _in vivo_. Our results show that Wnt5a deletion in FoxL1+ cells during fetal life causes a shortened gut phenotype in neonatal mice, and that our model is sufficient to increase rate of apoptosis in the elongating epithelium, thus explaining the shortened gut phenotype. However, in contrast to previous studies using Wnt5a null mice, we did not observe dysregulation of epithelial structure or apical-basal protein localization. Altogether, our findings establish a developmental role for FoxL1+ mesenchymal cells in controlling non-canonical Wnt signaling during midgut elongation.
KLHDC7B-DT aggravates pancreatic ductal adenocarcinoma development via inducing cross-talk between cancer cells and macrophages

Clinical science (London, England : 1979)

2021 Feb 26

Li, MX;Wang, HY;Yuan, CH;Ma, ZL;Jiang, B;Li, L;Zhang, L;Xiu, DR;
PMID: 33538300 | DOI: 10.1042/CS20201259

Tumor microenvironment (TME) exerts key roles in pancreatic ductal adenocarcinoma (PDAC) development. However, the factors regulating the cross-talk between PDAC cells and TME are largely unknown. In the present study, we identified a long noncoding RNA (lncRNA) KLHDC7B divergent transcript (KLHDC7B-DT), which was up-regulated in PDAC and correlated with poor survival of PDAC patients. Functional assays demonstrated that KLHDC7B-DT enhanced PDAC cell proliferation, migration, and invasion. Mechanistically, KLHDC7B-DT was found to directly bind IL-6 promoter, induce open chromatin structure at IL-6 promoter region, activate IL-6 transcription, and up-regulate IL-6 expression and secretion. The expression of KLHDC7B-DT was positively correlated with IL-6 in PDAC tissues. Via inducing IL-6 secretion, KLHDC7B-DT activated STAT3 signaling in PDAC cells in an autocrine manner. Furthermore, KLHDC7B-DT also activated STAT3 signaling in macrophages in a paracrine manner, which induced macrophage M2 polarization. KLHDC7B-DT overexpressed PDAC cells-primed macrophages promoted PDAC cell proliferation, migration, and invasion. Blocking IL-6/STAT3 signaling reversed the effects of KLHDC7B-DT on macrophage M2 polarization and PDAC cell proliferation, migration, and invasion. In conclusion, KLHDC7B-DT enhanced malignant behaviors of PDAC cells via IL-6-induced macrophage M2 polarization and IL-6-activated STAT3 signaling in PDAC cells. The cross-talk between PDAC cells and macrophages induced by KLHDC7B-DT represents potential therapeutic target for PDAC.
CD8+ T cells fail to limit SIV reactivation following ART withdrawal until after viral amplification

The Journal of clinical investigation

2021 Feb 25

Okoye, AA;Duell, DD;Fukazawa, Y;Varco-Merth, B;Marenco, A;Behrens, H;Chaunzwa, TM;Selseth, AN;Gilbride, RM;Shao, J;Edlefsen, PT;Geleziunas, R;Pinkevych, M;Davenport, MP;Busman-Sahay, K;Nekorchuk, MD;Park, H;Smedley, JV;Axthelm, MK;Estes, JD;Hansen, SG;Keele, BF;Lifson, JD;Picker, LJ;
PMID: 33630764 | DOI: 10.1172/JCI141677

To define the contribution of CD8+ T cell responses to control of SIV reactivation during and following antiretroviral therapy (ART), we determined the effect of long-term CD8+ T cell depletion using a rhesusized anti-CD8β monoclonal antibody (mAb) on barcoded SIVmac239 dynamics on stable ART and after ART cessation in Rhesus Macaques (RMs). Among the RMs with full CD8+ T cell depletion in both blood and tissue, there were no significant differences in the frequency of viral blips in plasma, the number of SIV RNA+ cells and the average number of RNA copies/infected cell in tissue, and levels of cell-associated SIV RNA and DNA in blood and tissue relative to control-treated RM during ART. Upon ART cessation, both CD8+ T cell-depleted and control RMs rebounded in <12 days with no difference in the time to viral rebound, or in either the number or growth rate of rebounding SIVmac239M barcode clonotypes. However, effectively CD8+ T cell-depleted RMs showed a stable ~2-log increase in post-ART plasma viremia relative to controls. These results indicate that while potent anti-viral CD8+ T cell responses can develop during ART-suppressed SIV infection, these responses effectively intercept post-ART SIV rebound only after systemic viral replication, too late to limit reactivation frequency or the early spread of reactivating SIV reservoirs.
SUV39H2 controls trophoblast stem cell fate

Biochimica et biophysica acta. General subjects

2021 Feb 05

Wang, L;Chakraborty, D;Iqbal, K;Soares, MJ;
PMID: 33556426 | DOI: 10.1016/j.bbagen.2021.129867

The placenta is formed by the coordinated expansion and differentiation of trophoblast stem (TS) cells along a multi-lineage pathway. Dynamic regulation of histone 3 lysine 9 (H3K9) methylation is pivotal to cell differentiation for many cell lineages, but little is known about its involvement in trophoblast cell development. Expression of H3K9 methyltransferases was surveyed in rat TS cells maintained in the stem state and following differentiation. The role of suppressor of variegation 3-9 homolog 2 (SUV39H2) in the regulation of trophoblast cell lineage development was investigated using a loss-of-function approach in rat TS cells and ex vivo cultured rat blastocysts. Among the twelve-known H3K9 methyltransferases, only SUV39H2 exhibited robust differential expression in stem versus differentiated TS cells. SUV39H2 transcript and protein expression were high in the stem state and declined as TS cells differentiated. Disruption of SUV39H2 expression in TS cells led to an arrest in TS cell proliferation and activation of trophoblast cell differentiation. SUV39H2 regulated H3K9 methylation status at loci exhibiting differentiation-dependent gene expression. Analyses of SUV39H2 on ex vivo rat blastocyst development supported its role in regulating TS cell expansion and differentiation. We further identified SUV39H2 as a downstream target of caudal type homeobox 2, a master regulator of trophoblast lineage development. Our findings indicate that SUV39H2 contributes to the maintenance of TS cells and restrains trophoblast cell differentiation. SUV39H2 serves as a contributor to the epigenetic regulation of hemochorial placental development.
Sonic Hedgehog receptor Patched deficiency in astrocytes enhances glucose metabolism in mice

Molecular metabolism

2021 Jan 26

Tirou, L;Russo, M;Faure, H;Pellegrino, G;Demongin, C;Daynac, M;Sharif, A;Amosse, J;Le Lay, S;Denis, R;Luquet, S;Taouis, M;Benomar, Y;Ruat, M;
PMID: 33513436 | DOI: 10.1016/j.molmet.2021.101172

Astrocytes are glial cells proposed as the main Sonic Hedgehog (Shh)-responsive cells in the adult brain. Their roles in mediating Shh functions are still poorly understood. In the hypothalamus, astrocytes support neuronal circuits implicated in the regulation of energy metabolism. Here, we investigated the impact of genetic activation of Shh signaling on hypothalamic astrocytes and characterized its effects on energy metabolism. We analyzed the distribution of gene transcripts of the Shh pathway (Ptc, Gli1, Gli2, Gli3) in astrocytes using single molecule fluorescence in situ hybridization combined to immunohistofluorescence and of Shh peptides by Western blotting in the adult mouse hypothalamus. Based on the metabolic phenotype, we characterized Glast-CreERT2-YFP-Ptc-/- (YFP-Ptc-/-) mice and their controls over time and under high-fat-diet (HFD) to investigate the potential effects of conditional astrocytic deletion of the Shh receptor Patched (Ptc) on metabolic efficiency, insulin sensitivity and systemic glucose metabolism. Molecular and biochemical assays were used to analyze the alteration of key pathways modulating energy metabolism, insulin sensitivity, glucose uptake and inflammation. Primary astrocyte cultures were used to evaluate a potential role of Shh signaling in astrocytic glucose uptake. Shh peptides were the highest in the hypothalamic extracts of adult mice and a large population of hypothalamic astrocytes expressed Ptc and Gli1-3 mRNAs. Characterization of Shh signaling after conditional Ptc deletion in YFP-Ptc-/- mice revealed heterogeneity in hypothalamic astrocyte populations. Interestingly, the activation of Shh signaling in Glast+ astrocytes enhanced insulin responsiveness as evidenced by glucose and insulin tolerance tests. This effect was maintained over time and associated with lower blood insulin levels and was also observed under HFD. YFP-Ptc-/- mice exhibited a lean phenotype with the absence of body weight gain and a marked reduction of white and brown adipose tissues accompanied by increased whole body fatty acid oxidation. In contrast, food intake, locomotor activity and body temperature were not altered. At the cellular level, Ptc deletion did not affect glucose uptake in primary astrocyte cultures. In the hypothalamus, the activation of astrocytic Shh pathway was associated with the upregulation of transcripts coding for the insulin receptor and the Liver Kinase B1 (LKB1) after 4 weeks, and for the glucose transporter Glut-4 after 32 weeks. Here, we define hypothalamic Shh action on astrocytes as a novel master regulator of energy metabolism. In the hypothalamus, astrocytic Shh signaling could be critically involved in preventing both aging- and obesity-related metabolic disorders.
Role of macrophages in zona glomerulosa differentiation

Endocrine Abstracts

2023 May 02

Garcia, D;Wilmouth, J;Olabe, J;Martinez, A;Val, P;
| DOI: 10.1530/endoabs.90.p277

Maturation of the definitive adrenal cortex occurs between 3 and 6 weeks post-partum and involves onset of CYP11B2 expression and establishment of the laminin-encased 3D structure of glomeruli that contain rosettes of 10 to 15 zona glomerulosa (zG) cells that work in coordination to produce optimal amounts of aldosterone. Although this process is dependent on canonical WNT/b-catenin signaling, cellular sources of WNT ligands remain elusive and the mechanisms involved in the extensive extra-cellular matrix remodeling associated with rosette/glomeruli morphogenesis are unknown. Beyond their role in innate immunity, macrophages are involved in extra-cellular matrix remodeling under a wide variety of pathophysiological conditions and have the capacity to produce WNT ligands. This, together with the presence of macrophages within the zG cells, strongly suggest that macrophages may play a role in zG morphogenesis and differentiation. Supporting this idea, a recent publication has shown that intra-tissular aldosterone concentration was reduced in the absence of macrophages under stress conditions. However, whether macrophages play a direct role in controlling aldosterone secretion or an indirect role by remodelling the postnatal zG is unknown. The presence of tissue resident macrophages in a specific zone is dependent on the production of trophic factors such as IL34, CSF1, CSF2 or CX3CL1 by nearby, tissue resident ‘niche’ cells. In return, macrophages are thought to provide positive ‘feedback’ signals to their niche, generating mutually beneficial circuits between the niche and its macrophages. To gain insight into the role of macrophages in zG morphogenesis and homeostasis, we used single cell sequencing and RNAscope analyses to show expression of CX3CL1 in the zG and of CX3CR1 in macrophages. Interestingly, CX3CL1 expression in the zG was downstream of WNT signalling, suggesting existence of a bi-directional interaction between macrophages and zG. To further study the role of macrophages during the maturation of the zG, we pharmacologically depleted macrophages by the small molecule inhibitor Pexidartinib at different time points between 3- and 12-weeks post-partum, when maturation of the zG occurs. Short-term depletion of macrophages resulted in a more disorganized and elongated zG, suggesting a delay in maturation. However, long-term depletion of macrophages resulted in exacerbated maturation of the rosettes, suggesting that the short-term zG defect was followed by establishment of a compensatory mechanism to allow formation of rosettes even in the absence of macrophages. Whether these perturbations of the zG are correlated with an altered production of aldosterone is still under study.
The Rac-GAP alpha2-chimaerin signals via CRMP2 and stathmins in the development of the ocular motor system

The Journal of neuroscience : the official journal of the Society for Neuroscience

2021 Jun 21

Carretero-Rodriguez, L;Guðjónsdóttir, R;Poparic, I;Reilly, ML;Chol, M;Bianco, IH;Chiapello, M;Feret, R;Deery, MJ;Guthrie, S;
PMID: 34168008 | DOI: 10.1523/JNEUROSCI.0983-19.2021

A precise sequence of axon guidance events is required for the development of the ocular motor system. Three cranial nerves grow towards, and connect with, six extraocular muscles in a stereotyped pattern, in order to control eye movements. The signalling protein alpha2-chimaerin (α2-CHN) plays a pivotal role in the formation of the ocular motor system; mutations in CHN1, encoding α2-CHN, cause the human eye movement disorder Duane Retraction Syndrome (DRS). Our research has demonstrated that manipulation of α2-chn signalling in the zebrafish embryo leads to ocular motor axon wiring defects, although the signalling cascades regulated by α2-chn remain poorly understood. Here, we demonstrate that several cytoskeletal regulatory proteins - collapsin response mediator protein 2 (CRMP2), (encoded by the gene dpysl2), stathmin1 and stathmin 2 - bind to α2-CHN. dpysl2, stathmin1 and especially stathmin2 are expressed by ocular motor neurons. We find that manipulation of dpysl2 and of stathmins in zebrafish larvae leads to defects in both the axon wiring of the ocular motor system and the optokinetic reflex, impairing horizontal eye movements. Knockdowns of these molecules in zebrafish larvae of either sex caused axon guidance phenotypes that included defasciculation and ectopic branching; in some cases these phenotypes were reminiscent of DRS. chn1 knockdown phenotypes were rescued by overexpression of CRMP2 and STMN1, suggesting that these proteins act in the same signalling pathway. These findings suggest that CRMP2 and stathmins signal downstream of α2-CHN to orchestrate ocular motor axon guidance, and to control eye movements.Significance statementThe precise control of eye movement is crucial for the life of vertebrate animals, including humans. In humans, this control depends on the arrangement of nerve wiring of the ocular motor system, composed of three nerves and six muscles, a system that is conserved across vertebrate phyla. Mutations in the protein alpha2-chimaerin have previously been shown to cause eye movement disorders (squint) and axon wiring defects in humans. Our recent work has unravelled how alpha2-chimaerin co-ordinates axon guidance of the ocular motor system in animal models. In this paper, we demonstrate key roles for the proteins CRMP2 and stathmin 1/2 in the signalling pathway orchestrated by alpha2-chimaerin, potentially giving insight into the aetiology of eye movement disorders in humans.
Optic nerve head (ONH) glial activation molecular signature across disease stages in a feline glaucoma model

Investigative Ophthalmology & Visual Science

2021 Jan 01

Oikawa, K;Kiland, JA;Torne, O;Gloe, S;

Purpose : Mechanisms of axonal insult within the ONH in glaucoma are not fully understood. This study aimed to delineate ONH molecular alterations in chronic stages of glaucoma, in an inherited feline model with ONH structure comparable to humans. Methods : ONH tissues from 10 LTBP2mut/mut cats with glaucoma and 5 wt control cats (age 1-3 yrs) were used to generate cDNA libraries for RNAseq. Weekly intraocular pressure (IOP) data and optic nerve axon counts were available for all subjects. Differentially expressed genes (DEGs) were identified using DESeq2 (false discovery rate < 0.05), and g:Profiler was used for functional enrichment analysis. DEGs in chronic glaucoma were compared to DEGs in an RNA-seq dataset generated by our lab from ONH tissues of LTBP2mut/mut cats prior to axon degeneration. Transcriptomic findings were validated by RNAscope in situ hybridization (ISH) and by immunolabeling (IF) of archived ONH tissue sections. For confirmatory studies, data were compared between groups by two-tailed unpaired t-test or ANOVA (p < 0.05 considered significant). Results : Mean and cumulative IOP over 10mths prior to tissue collection were consistently higher in LTBP2mut/mut than in wt cats. Stratifying subjects by optic nerve damage based on histological evaluation (mild [MLD], moderate [MOD] and severe [SEV] damage), 77, 882 and 1878 DEGs were identified, respectively, in glaucoma relative to age-matched controls. Functional analysis of DEGs in chronic, established glaucoma (MOD and SEV groups) identified upregulated DEGs ascribed to cell adhesion, immune/inflammatory responses, and MAPK cascade, and downregulated DEGs associated with metabolism, fatty acid synthesis, actin cytoskeleton and myelination. Comparing these DEGs in established chronic glaucoma to those in pre-degenerative, early-stage disease, 111 DEGs were shared between stages, including significant upregulation of HP and TNC. ISH confirmed expression of HP and TNC in the ONH, but with sub-regional differences in expression. TNC was highly expressed in the prelaminar - laminar regions and HP in the laminar and retrolaminar regions. ISH and IF identified astrocytes as the predominant ONH cell-type expressing these gene products. Conclusions : Early and chronic stages of glaucoma share a reactive astrocyte molecular signature. Gene expression changes are more complex and enhanced in chronic glaucoma.
Levels of circulating NS1 impact West Nile virus spread to the brain

Journal of virology

2021 Aug 04

Wessel, AW;Dowd, KA;Biering, SB;Zhang, P;Edeling, MA;Nelson, CA;Funk, KE;DeMaso, CR;Klein, RS;Smith, JL;Cao, TM;Kuhn, RJ;Fremont, DH;Harris, E;Pierson, TC;Diamond, MS;
PMID: 34346770 | DOI: 10.1128/JVI.00844-21

Dengue (DENV) and West Nile (WNV) viruses are arthropod-transmitted flaviviruses that respectively cause systemic vascular leakage and encephalitis syndromes in humans. However, the viral factors contributing to these specific clinical disorders are not completely understood. Flavivirus nonstructural protein 1 (NS1) is required for replication, expressed on the cell surface, and secreted as a soluble glycoprotein, reaching high levels in the blood of infected individuals. Extracellular DENV and WNV NS1 interact with host proteins and cells, have immune evasion functions, and promote endothelial dysfunction in a tissue-specific manner. To characterize how differences in DENV and WNV NS1 might function in pathogenesis, we generated WNV NS1 variants with substitutions corresponding to residues found in DENV NS1. We discovered that the substitution NS1-P101K led to reduced WNV infectivity of the brain and attenuated lethality in infected mice, although the virus replicated efficiently in cell culture and peripheral organs and bound at wild-type levels to brain endothelial cells and complement components. The P101K substitution resulted in reduced NS1 antigenemia in mice, and this was associated with reduced WNV spread to the brain. As exogenous administration of NS1 protein rescued WNV brain infectivity in mice, we conclude that circulating WNV NS1 facilitates viral dissemination into the central nervous system and impacts disease outcome. IMPORTANCE Flavivirus NS1 serves as an essential scaffolding molecule during virus replication but also is expressed on the cell surface and secreted as a soluble glycoprotein that circulates in the blood of infected individuals. Although extracellular forms of NS1 are implicated in immune modulation and in promoting endothelial dysfunction at blood-tissue barriers, it has been challenging to study specific effects of NS1 on pathogenesis without disrupting its key role in virus replication. Here we assessed West Nile virus (WNV) NS1 variants that do not affect virus replication and evaluated their effects on pathogenesis in mice. Our characterization of WNV NS1-P101K suggests that the levels of NS1 in circulation facilitate WNV dissemination to the brain and disease outcome. Our findings help understand the role of NS1 during flavivirus infection and support antiviral strategies for targeting circulating forms of NS1.
Genetic Variants in ARHGEF6 Cause Congenital Anomalies of the Kidneys and Urinary Tract in Humans, Mice, and Frogs

Journal of the American Society of Nephrology : JASN

2022 Nov 22

Klämbt, V;Buerger, F;Wang, C;Naert, T;Richter, K;Nauth, T;Weiss, AC;Sieckmann, T;Lai, E;Connaughton, D;Seltzsam, S;Mann, N;Majmundar, A;Wu, CH;Onuchic-Whitford, A;Shril, S;Schneider, S;Schierbaum, L;Dai, R;Bekheirnia, MR;Joosten, M;Shlomovitz, O;Vivante, A;Banne, E;Mane, S;Lifton, RP;Kirschner, K;Kispert, A;Rosenberger, G;Fischer, KD;Lienkamp, S;Zegers, M;Hildebrandt, F;
PMID: 36414417 | DOI: 10.1681/ASN.2022010050

Background About 40 disease genes have been described to date for isolated congenital anomalies of the kidneys and urinary tract (CAKUT), the most common cause of childhood chronic kidney disease. However, these genes account for only 20% of cases. ARHGEF6, a guanine nucleotide exchange factor that is implicated in such biologic processes as cell migration and focal adhesion, acts downstream of integrin linked kinase (ILK) and parvin proteins. A genetic variant of ILK that causes murine renal agenesis abrogates the interaction of ILK with a murine focal adhesion protein encoded by Parva, leading to CAKUT in mice with this variant. Methods To identify novel genes that, when mutated, result in CAKUT, we performed exome sequencing in an international cohort of 1265 families with CAKUT. We also assessed the effects in vitro of wild-type and mutant ARHGEF6 proteins, as well as the effects of Arhgef6 deficiency in mouse and frog models. Results We detected six different hemizygous variants in the gene ARHGEF6 (which is located on the X chromosome in humans) in eight individuals from six families with CAKUT. In kidney cells, overexpression of wild-type ARHGEF6-but not proband-derived mutant ARHGEF6- increased active levels of CDC42/RAC1, induced lamellipodia formation, and stimulated PARVAdependent cell spreading. ARHGEF6 mutant proteins showed loss of interaction with PARVA. Three-dimensional MDCK cell cultures expressing ARHGEF6 mutant proteins exhibited reduced lumen formation and polarity defects. Arhgef6 deficiency in mouse and frog models recapitulated features of human CAKUT. Conclusions Deleterious variants in ARHGEF6 may cause dysregulation of integrin-parvinRAC1/CDC42 signaling, thereby leading to X-linked CAKUT.
Adaptations in nucleus accumbens neuron subtypes mediate negative affective behaviors in fentanyl abstinence

Biological Psychiatry

2022 Aug 01

Fox, M;Wulff, A;Franco, D;Choi, E;Calarco, C;Engeln, M;Turner, M;Chandra, R;Rhodes, V;Thompson, S;Ament, S;Lobo, M;
| DOI: 10.1016/j.biopsych.2022.08.023

Background Opioid discontinuation generates a withdrawal syndrome marked by increased negative affect. Increased symptoms of anxiety and dysphoria during opioid discontinuation are a significant barrier to achieving long-term abstinence in opioid-dependent individuals. While adaptations in the nucleus accumbens are implicated in the opioid abstinence syndrome, the precise neural mechanisms are poorly understood. Additionally, our current knowledge is limited to changes following natural and semi-synthetic opioids, despite recent increases in synthetic opioid use and overdose. Methods We used a combination of cell subtype specific viral-labeling and electrophysiology in male and female mice to investigate structural and functional plasticity in nucleus accumbens medium spiny neuron (MSNs) subtypes after fentanyl abstinence. We characterized molecular adaptations after fentanyl abstinence with subtype specific RNAseq and Weighted Gene Co-expression Network Analysis. We used viral-mediated gene transfer to manipulate the molecular signature of fentanyl abstinence in D1-MSNs. Results Here we show fentanyl abstinence increases anxiety-like behavior, decreases social interaction, and engenders MSN subtype-specific plasticity in both sexes. D1, but not D2-MSNs exhibit dendritic atrophy and an increase in excitatory drive. We identified a cluster of co-expressed dendritic morphology genes downregulated selectively in D1-MSNs that are transcriptionally co-regulated by E2F1. E2f1 expression in D1-MSNs protects against loss of dendritic complexity, altered physiology, and negative affect-like behaviors caused by fentanyl abstinence. Conclusion Our findings indicate fentanyl abstinence causes unique structural, functional, and molecular changes in nucleus accumbens D1-MSNs that can be targeted to alleviate negative affective symptoms during abstinence.
Sirtuin 3 Restores Synthesis and Secretion of Very Low-Density Lipoproteins in Cow Hepatocytes Challenged with Nonesterified Fatty Acids In Vitro

Veterinary sciences

2021 Jun 30

Xing, D;Wang, B;Lu, H;Peng, T;Su, J;Lei, H;He, J;Zhou, Y;Liu, L;
PMID: 34208809 | DOI: 10.3390/vetsci8070121

Fatty liver is closely associated with elevated concentrations of nonesterified fatty acids (NEFA) and a low level of very low-density lipoproteins (VLDL) in blood of dairy cows. High NEFA inhibit the VLDL synthesis and assembly, and cause hepatic triacylglycerol (TAG) deposition. Sirtuin 3 (SIRT3), a mitochondrial deacetylase, antagonizes NEFA-induced TAG accumulation through modulating expressions of fatty acid synthesis and oxidation genes in cow hepatocytes. However, the role of SIRT3 in the VLDL synthesis and assembly was largely unknown. Here we aimed to test whether SIRT3 would recover the synthesis and assembly of VLDL in cow hepatocytes induced by high NEFA. Primary cow hepatocytes were isolated from 3 Holstein cows. Hepatocytes were infected with SIRT3 overexpression adenovirus (Ad-SIRT3), SIRT3-short interfering (si) RNA, or first infected with Ad-SIRT3 and then incubated with 1.0 mM NEFA (Ad-SIRT3 + NEFA). Expressions of key genes in VLDL synthesis and the VLDL contents in cell culture supernatants were measured. SIRT3 overexpression significantly increased the mRNA abundance of microsomal triglyceride transfer protein (MTP), apolipoprotein B100 (ApoB100) and ApoE (p < 0.01), and raised VLDL contents in the supernatants (p < 0.01). However, SIRT3 silencing displayed a reverse effect in comparison to SIRT3 overexpression. Compared with NEFA treatment alone, the Ad-SIRT3 + NEFA significantly upregulated the mRNA abundance of MTP, ApoB100 and ApoE (p < 0.01), and increased VLDL contents in the supernatants (p < 0.01). Our data demonstrated that SIRT3 restored the synthesis and assembly of VLDL in cow hepatocytes challenged with NEFA, providing an in vitro basis for further investigations testing its feasibility against hepatic TAG accumulation in dairy cows during the perinatal period.

Pages

  • « first
  • ‹ previous
  • …
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?