Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (12)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • (-) Remove CD4 filter CD4 (6)
  • (-) Remove MET filter MET (6)
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.0 Assay (3) Apply RNAscope 2.0 Assay filter
  • Basescope (1) Apply Basescope filter
  • RNAscope (1) Apply RNAscope filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter

Research area

  • (-) Remove Cancer filter Cancer (12)
  • Immunotherapy (1) Apply Immunotherapy filter
  • Inflammation (1) Apply Inflammation filter
  • Neuroscience (1) Apply Neuroscience filter

Category

  • Publications (12) Apply Publications filter
Clinical and prognostic value of MET gene copy number gain and chromosome 7 polysomy in primary colorectal cancer patients.

Tumour Biol. 2015 Jul 10.

Seo AN, Park KU, Choe G, Kim WH, Kim DW, Kang SB, Lee HS.
PMID: 26159851

We aimed to explore the clinical and prognostic influence of numeric alterations of MET gene copy number (GCN) and chromosome 7 (CEP7) CN in colorectal cancer (CRC) patients. MET GCN and CEP7 CN were investigated in tissue arrayed tumors from 170 CRC patients using silver in situ hybridization (SISH). MET GCN gain was defined as ≥4 copies of MET, and CEP7 polysomy was prespecified as ≥3 copies of CEP7. Additionally, MET messenger RNA (mRNA) transcription was evaluated using mRNA ISH and compared with MET GCN. MET GCN gain was observed in 14.7 % (25/170), which correlated with advanced stage (P = 0.037), presence of distant metastasis (P = 0.006), and short overall survival (OS) (P = 0.009). In contrast, CEP7 polysomy was found in 6.5 % (11/170), which was related to tumor location in the left colon (P = 0.027) and poor OS (P = 0.029). MET GCN positively correlated with CEP7 CN (R = 0.659, P < 0.001) and mRNA transcription (R = 0.239, P = 0.002). Of note, MET GCN gain and CEP7 polysomy were also associated with poor OS (P = 0.016 and P < 0.001, respectively) in stage II/III CRC patients (n = 123). In multivariate analysis, CEP7 polysomy was an independent prognostic factor for poor OS in all patients (P = 0.009; hazard ratio [HR], 2.220; 95 % confidence interval [CI], 1.233-3.997) and in stage II/III CRC patients (P < 0.001; HR, 20.781; 95 % CI, 4.600-93.882). MET GCN gain and CEP7 polysomy could predict a poor outcome in CRC patients, especially CEP7 polysomy has the most powerful prognostic impact in stage II/III CRC patients
Listeria delivers tetanus toxoid protein to pancreatic tumors and induces cancer cell death in mice

Science translational medicine

2022 Mar 23

Selvanesan, BC;Chandra, D;Quispe-Tintaya, W;Jahangir, A;Patel, A;Meena, K;Alves Da Silva, RA;Friedman, M;Gabor, L;Khouri, O;Libutti, SK;Yuan, Z;Li, J;Siddiqui, S;Beck, A;Tesfa, L;Koba, W;Chuy, J;McAuliffe, JC;Jafari, R;Entenberg, D;Wang, Y;Condeelis, J;DesMarais, V;Balachandran, V;Zhang, X;Lin, K;Gravekamp, C;
PMID: 35320003 | DOI: 10.1126/scitranslmed.abc1600

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease. Tumors are poorly immunogenic and immunosuppressive, preventing T cell activation in the tumor microenvironment. Here, we present a microbial-based immunotherapeutic treatment for selective delivery of an immunogenic tetanus toxoid protein (TT856-1313) into PDAC tumor cells by attenuated Listeria monocytogenes. This treatment reactivated preexisting TT-specific memory T cells to kill infected tumor cells in mice. Treatment of KrasG12D,p53R172H, Pdx1-Cre (KPC) mice with Listeria-TT resulted in TT accumulation inside tumor cells, attraction of TT-specific memory CD4 T cells to the tumor microenvironment, and production of perforin and granzyme B in tumors. Low doses of gemcitabine (GEM) increased immune effects of Listeria-TT, turning immunologically cold into hot tumors in mice. In vivo depletion of T cells from Listeria-TT + GEM-treated mice demonstrated a CD4 T cell-mediated reduction in tumor burden. CD4 T cells from TT-vaccinated mice were able to kill TT-expressing Panc-02 tumor cells in vitro. In addition, peritumoral lymph node-like structures were observed in close contact with pancreatic tumors in KPC mice treated with Listeria-TT or Listeria-TT + GEM. These structures displayed CD4 and CD8 T cells producing perforin and granzyme B. Whereas CD4 T cells efficiently infiltrated the KPC tumors, CD8 T cells did not. Listeria-TT + GEM treatment of KPC mice with advanced PDAC reduced tumor burden by 80% and metastases by 87% after treatment and increased survival by 40% compared to nontreated mice. These results suggest that Listeria-delivered recall antigens could be an alternative to neoantigen-mediated cancer immunotherapy.
Different spatial distribution of inflammatory cells in the tumor microenvironment of ABC and GBC subgroups of diffuse large B cell lymphoma

Clinical and experimental medicine

2021 May 06

Guidolin, D;Tamma, R;Annese, T;Tortorella, C;Ingravallo, G;Gaudio, F;Perrone, T;Musto, P;Specchia, G;Ribatti, D;
PMID: 33959827 | DOI: 10.1007/s10238-021-00716-w

Diffuse Large B-Cell Lymphoma (DLBCL) presents a high clinical and biological heterogeneity, and the tumor microenvironment chracteristics are important in its  progression. The aim of this study was to evaluate tumor T, B cells, macrophages and mast cells distribution in GBC and ABC DLBCL subgroups through a set of morphometric parameters allowing to provide a quantitative evaluation of the morphological features of the spatial patterns generated by these inflammatory cells.   Histological ABC and GCB samples were immunostained for CD4, CD8, CD68, CD 163, and tryptase in order to determine both percentage and position of positive cells in the tissue characterizing their spatial distribution. The results evidenced that cell patterns generated by CD4-, CD8-, CD68-, CD163- and tryptase-positive cell profiles exhibited a significantly higher uniformity index in ABC than in GCB subgroup. The positive-cell distributions appeared clustered in tissues from GCB, while in tissues from ABC such a feature was lower or absent. The combinations of spatial statistics-derived parameters can lead to better predictions of tumor cell infiltration than any classical morphometric method providing a more accurate description of the functional status of the tumor, useful for patient prognosis.
Immunologic and gene expression profiles of spontaneous canine oligodendrogliomas

J Neurooncol.

2018 Jan 12

Filley A, Henriquez M, Bhowmik T, Tewari BN, Rao X, Wan J, Miller MA, Liu Y, Bentley RT, Dey M.
PMID: 29330750 | DOI: 10.1007/s11060-018-2753-4

Malignant glioma (MG), the most common primary brain tumor in adults, is extremely aggressive and uniformly fatal. Several treatment strategies have shown significant preclinical promise in murine models of glioma; however, none have produced meaningful clinicalresponses in human patients. We hypothesize that introduction of an additional preclinical animal model better approximating the complexity of human MG, particularly in interactions with host immune responses, will bridge the existing gap between these two stages of testing. Here, we characterize the immunologic landscape and gene expression profiles of spontaneous canine glioma and evaluate its potential for serving as such a translational model. RNA in situ hybridization, flowcytometry, and RNA sequencing were used to evaluate immune cell presence and gene expression in healthy and glioma-bearing canines. Similar to human MGs, canine gliomas demonstrated increased intratumoral immune cell infiltration (CD4+, CD8+ and CD4+Foxp3+ T cells). The peripheral blood of glioma-bearing dogs also contained a relatively greater proportion of CD4+Foxp3+ regulatory T cells and plasmacytoid dendritic cells. Tumors were strongly positive for PD-L1 expression and glioma-bearing animals also possessed a greater proportion of immune cells expressing the immune checkpoint receptors CTLA-4 and PD-1. Analysis of differentially expressed genes in our canine populations revealed several genetic changes paralleling those known to occur in human disease. Naturally occurring canine glioma has many characteristics closely resembling human disease, particularly with respect to genetic dysregulation and host immune responses to tumors, supporting its use as a translational model in the preclinical testing of prospective anti-glioma therapies proven successful in murine studies.

Increased T cell infiltration elicited by Erk5 deletion in a Pten-deficient mouse model of prostate carcinogenesis.

Cancer Res.

2017 May 17

Loveridge C, Mui E, Patel R, Tan EH, Ahmad I, Welsh M, Galbraith J, Hedley A, Nixon C, Blyth K, Sansom OJ, Leung HY.
PMID: 28515147 | DOI: 10.1158/0008-5472.CAN-16-2565

Prostate cancer (PCa) does not appear to respond to immune checkpoint therapies where T cell infiltration may be a key limiting factor. Here we report evidence that ablating the growth regulatory kinase Erk5 can increase T cell infiltration in an established Pten-deficient mouse model of human PCa. Mice that were doubly mutant in prostate tissue for Pten and Erk5 (prostate DKO) exhibited a markedly increased median survival with reduced tumor size and proliferation compared to control Pten-mutant mice, the latter of which exhibited increased Erk5 mRNA expression. A comparative transcriptomic analysis revealed upregulation in prostate DKO mice of the chemokines Ccl5 and Cxcl10, two potent chemoattractants for T lymphocytes. Consistent with this effect, we observed a relative increase in a predominantly CD4+ T cell infiltrate in the prostate epithelial and stroma of tumors from DKO mice. Collectively, our results offer a preclinical proof of concept for ERK5 as a target to enhance T cell infiltrates in prostate cancer, with possible implications for leveraging immune therapy in this disease.

Analysis of MET mRNA Expression in Gastric Cancers Using RNA In Situ Hybridization Assay: Its Clinical Implication and Comparison with Immunohistochemistry and Silver In Situ Hybridization.

PLoS One. 2014 Nov 3;9(11):e111658.

Choi J, Lee HE, Kim MA, Jang BG, Lee HS, Kim WH.
PMID: 25364819 | DOI: 10.1371/journal.pone.0111658

We investigated MET mRNA expression status using RNA in situ hybridization (ISH) technique in primary and metastatic lesions of 535 surgically resected gastric carcinoma (GC) cases. We compared the results with those of immunohistochemistry and silver in situ hybridization, and examined the association with clinicopathologic characteristics and prognosis. Among 535 primary GCs, 391 (73.1%) were scored 0, 87 (16.3%) were scored 1, 38 (7.1%) were scored 2, 12 (2.2%) were scored 3 and 7 (1.3%) were scored 4 by RNA ISH. High MET mRNA expression (score ≥3) was associated with lymph node metastasis (P = .014), distant metastasis (P = .001), and higher TNM stage (P<.001). MET mRNA expression was correlated with protein expression (r = 0.398; P<.001) and gene copy number (r = 0.345; P<.001). The patients showing high-MET mRNA in primary or metastatic lesions had shorter overall survival than those showing low-MET mRNA (primary tumors, P = .002; metastatic lymph nodes, P<.001). The patients showing positive conversion of MET mRNA status in metastatic lymph node had shorter overall survival than those with no conversion (P = .011). Multivariate analysis demonstrated that high MET mRNA expression in metastatic lymph node was an independent prognostic factor for overall survival (P = .007). Therefore, this study suggests that MET mRNA expression assessed by RNA ISH could be useful as a potential marker to identify MET oncogene-addicted GC.
Transcriptional upregulation of c-MET is associated with invasion and tumor budding in colorectal cancer.

Oncotarget.

2016 Oct 26

Bradley CA, Dunne PD, Bingham V, McQuaid S, Khawaja H, Craig S, James J, Moore WL, McArt DG, Lawler M, Dasgupta S, Johnston PG, Van Schaeybroeck S.
PMID: 27793046 | DOI: 10.18632/oncotarget.12933

c-MET and its ligand HGF are frequently overexpressed in colorectal cancer (CRC) and increased c-MET levels are found in CRC liver metastases. This study investigated the role of the HGF/c-MET axis in regulating migration/invasion in CRC, using pre-clinical models and clinical samples. Pre-clinically, we found marked upregulation of c-MET at both protein and mRNA levels in several invasive CRC cells. Down-regulation of c-MET using RNAi suppressed migration/invasion of parental and invasive CRC cells. Stimulation of CRC cells with rh-HGF or co-culture with HGF-expressing colonic myofibroblasts, resulted in significant increases in their migratory/invasive capacity. Importantly, HGF-induced c-MET activation promoted rapid downregulation of c-MET protein levels, while the MET transcript remained unaltered. Using RNA in situ hybridization (RNA ISH), we further showed that MET mRNA, but not protein levels, were significantly upregulated in tumor budding foci at the invasive front of a cohort of stage III CRC tumors (p < 0.001). Taken together, we show for the first time that transcriptional upregulation of MET is a key molecular event associated with CRC invasion and tumor budding. This data also indicates that RNA ISH, but not immunohistochemistry, provides a robust methodology to assess MET levels as a potential driving force of CRC tumor invasion and metastasis.

Detection of MET mRNA in gastric cancer in situ. Comparison with immunohistochemistry and sandwich immunoassays

Biotech Histochem.

2017 Aug 24

Schmid E, Klotz M, Steiner-Hahn K, Konen T, Frisk AL, Schatz C, Krahn T, von Ahsen O.
PMID: 28836864 | DOI: 10.1080/10520295.2017.1339913

Determination of predictive biomarkers by immunohistochemistry (IHC) relies on antibodies with high selectivity. RNA in situ hybridization (RNA ISH) may be used to confirm IHC and may potentially replace it if suitable antibodies are not available or are insufficiently selective to discriminate closely related protein isoforms. We validated RNA ISH as specificity control for IHC and as a potential alternative method for selecting patients for treatment with MET inhibitors. MET, the HGF receptor, is encoded by the MET proto-oncogene that may be activated by mutation or amplification. MET expression and activity were tested in a panel of control cell lines. MET could be detected in formalin fixed paraffin, embedded (FFPE) samples by IHC and RNA ISH, and this was confirmed by sandwich immunoassays of fresh frozen samples. Gastric cancer cell lines with high MET expression and phosphorylation of tyrosine-1349 respond to the MET inhibitor, BAY-853474. High expression and phosphorylation of MET is a predictive biomarker for response to MET inhibitors. We then analyzed MET expression and activity in a matched set of FFPE vs. fresh frozen tumor samples consisting of 20 cases of gastric cancer. Two of 20 clinical samples investigated exhibited high MET expression with RNA ISH and IHC. Both cases were shown by sandwich immunoassays to exhibits strong functional activity. Expression levels and functional activity in these two cases were in a range that predicted response to treatment. Our findings indicate that owing to its high selectivity, RNA ISH can be used to confirm findings obtained by IHC and potentially may replace IHC for certain targets if no suitable antibodies are available. RNA ISH is a valid platform for testing predictive biomarkers for patient selection.

Host IL11 Signaling Suppresses CD4+ T cell-Mediated Antitumor Responses to Colon Cancer in Mice

Cancer immunology research

2021 Apr 27

Huynh, J;Baloyan, D;Chisanga, D;Shi, W;O'Brien, M;Afshar-Sterle, S;Alorro, M;Pang, L;Williams, DS;Parslow, AC;Thilakasiri, P;Eissmann, MF;Boon, L;Masson, F;Chand, AL;Ernst, M;
PMID: 33906864 | DOI: 10.1158/2326-6066.CIR-19-1023

IL11 is a member of the IL6 family of cytokines and signals through its cognate receptor subunits, IL11RA and glycoprotein 130 (GP130), to elicit biological responses via the JAK/STAT signaling pathway. IL11 contributes to cancer progression by promoting the survival and proliferation of cancer cells, but the potential immunomodulatory properties of IL11 signaling during tumor development have thus far remained unexplored. Here, we have characterized a role for IL11 in regulating CD4+ T cell-mediated antitumor responses. Absence of IL11 signaling impaired tumor growth in a sporadic mouse model of colon cancer and syngeneic allograft models of colon cancer. Adoptive bone marrow transfer experiments and in vivo depletion studies demonstrated that the tumor-promoting activity of IL11 was mediated through its suppressive effect on host CD4+ T cells in the tumor microenvironment. Indeed, when compared with Il11ra-proficient CD4+ T cells associated with MC38 tumors, their Il11ra-deficient counterparts displayed elevated expression of mRNA encoding the antitumor mediators IFNγ and TNFα. Likewise, IL11 potently suppressed the production of proinflammatory cytokines (IFNγ, TNFα, IL6, and IL12p70) by CD4+ T cells in vitro, which we corroborated by RNAscope analysis of human colorectal cancers, where IL11RAhigh tumors showed less IFNG and CD4 expression than IL11RAlow tumors. Therefore, our results ascribe a tumor cell-extrinsic immunomodulatory role to IL11 during colon cancer development that could be amenable to an anticytokine-based therapy.See related commentary by van der Burg.
Abstract LB190: DNAscopeTM: A novel chromogenic in-situ hybridization technology for high-resolution detection of DNA copy number and structural variations

Molecular and Cellular Biology/Genetics

2021 Jul 01

Wang, L;Tondnevis, F;Todorov, C;Gaspar, J;Sahajan, A;Murlidhar, V;Zhang, B;Ma, X;
| DOI: 10.1158/1538-7445.am2021-lb190

Genomic DNA anomalies such as copy number variations (gene duplication, amplification, deletion) and gene rearrangements are important biomarkers and drug targets in many cancer types. DNA in-situ hybridization (ISH) is the gold standard method to directly visualize these molecular alterations in formalin-fixed paraffin-embedded (FFPE) tumor tissues at single-cell resolution within a histological section. However, currently available fluorescent ISH (FISH) assays provide limited morphological detail due to the use of fluorescent nuclear staining compared to chromogenic staining. Furthermore, FISH techniques rely on expensive fluorescence microscopes, risk loss of fluorescent signal over time and involve tedious imaging at high magnifications (100X). There is thus an unmet need for a sensitive and robust chromogenic DNA-ISH assay that can enable high-resolution detection of genomic DNA targets with the ease of bright-field microscopy. We present here DNAscope - a novel chromogenic DNA-ISH assay - for detecting and visualizing genomic DNA targets under a standard light microscope. DNAscope is based on the widely used RNAscope double-Z probe design and signal amplification technology and provides unparalleled sensitivity and specificity with large signal dots readily visualized at 40X magnification and with full morphological context. Furthermore, DNAscope ensures specific DNA detection without interference from RNA due to the use of a novel RNA removal method. Using a duplex chromogenic detection assay in red and blue, we demonstrate highly specific and efficient detection of gene rearrangements (ALK, ROS1, RET and NTRK1), gene amplification (ERBB2, EGFR, MET) and deletion (TP53 and CDKN2A). The DNAscope assay has been carefully optimized for probe signal size and color contrast to enable easy interpretation of signal patterns under conventional light microscopy or digital pathology. Compared to conventional FISH assays, DNAscope probes are standard oligos that are designed in silico to be free of any repetitive sequences and can be rapidly synthesized for any DNA target. In conclusion, the DNAscope assay provides a powerful and convenient alternative to commonly used FISH assays in many cancer research applications.
Rejection of benign melanocytic nevi by nevus-resident CD4+ T cells

Science advances

2021 Jun 01

Schiferle, EB;Cheon, SY;Ham, S;Son, HG;Messerschmidt, JL;Lawrence, DP;Cohen, JV;Flaherty, KT;Moon, JJ;Lian, CG;Sullivan, RJ;Demehri, S;
PMID: 34162549 | DOI: 10.1126/sciadv.abg4498

Melanoma and melanocytic nevi harbor shared lineage-specific antigens and oncogenic mutations. Yet, the relationship between the immune system and melanocytic nevi is unclear. Using a patient-derived xenograft (PDX) model, we found that 81.8% of the transplanted nevi underwent spontaneous regression, while peripheral skin remained intact. Nevus-resident CD4+ T helper 1 cells, which exhibited a massive clonal expansion to melanocyte-specific antigens, were responsible for nevus rejection. Boosting regulatory T cell suppressive function with low-dose exogenous human interleukin-2 injection or treatment with a human leukocyte antigen (HLA) class II-blocking antibody prevented nevus rejection. Notably, mice with rejected nevus PDXs were protected from melanoma tumor growth. We detected a parallel CD4+ T cell-dominant immunity in clinically regressing melanocytic nevi. These findings reveal a mechanistic explanation for spontaneous nevus regression in humans and posit the activation of nevus-resident CD4+ effector T cells as a novel strategy for melanoma immunoprevention and treatment.
Oncogenic switch and single-agent MET inhibitor sensitivity in a subset of EGFR-mutant lung cancer

Science translational medicine

2021 Sep 01

Eser, PÖ;Paranal, RM;Son, J;Ivanova, E;Kuang, Y;Haikala, HM;To, C;Okoro, JJ;Dholakia, KH;Choi, J;Eum, Y;Ogino, A;Missios, P;Ercan, D;Xu, M;Poitras, MJ;Wang, S;Ngo, K;Dills, M;Yanagita, M;Lopez, T;Lin, M;Tsai, J;Floch, N;Chambers, ES;Heng, J;Anjum, R;Santucci, AD;Michael, K;Schuller, AG;Cross, D;Smith, PD;Oxnard, GR;Barbie, DA;Sholl, LM;Bahcall, M;Palakurthi, S;Gokhale, PC;Paweletz, CP;Daley, GQ;Jänne, PA;
PMID: 34516823 | DOI: 10.1126/scitranslmed.abb3738

[Figure: see text].
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?