Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (6)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV E6/E7 (30) Apply HPV E6/E7 filter
  • Lgr5 (20) Apply Lgr5 filter
  • PD-L1 (9) Apply PD-L1 filter
  • Axin2 (6) Apply Axin2 filter
  • FGFR1 (6) Apply FGFR1 filter
  • IFN-γ (5) Apply IFN-γ filter
  • HER2 (5) Apply HER2 filter
  • OLFM4 (5) Apply OLFM4 filter
  • MALAT1 (4) Apply MALAT1 filter
  • Wnt4 (4) Apply Wnt4 filter
  • Wnt5a (4) Apply Wnt5a filter
  • MYC (4) Apply MYC filter
  • OLFM4 (4) Apply OLFM4 filter
  • PTEN (4) Apply PTEN filter
  • TERT (4) Apply TERT filter
  • TNF-α (4) Apply TNF-α filter
  • TGF-β (4) Apply TGF-β filter
  • IL-17A (4) Apply IL-17A filter
  • HPV (4) Apply HPV filter
  • AR-V7 (4) Apply AR-V7 filter
  • Wnt7a (3) Apply Wnt7a filter
  • AR (3) Apply AR filter
  • (-) Remove BRCA1 filter BRCA1 (3)
  • (-) Remove MET filter MET (3)
  • CXCL10 (3) Apply CXCL10 filter
  • HEY2 (3) Apply HEY2 filter
  • HOTAIR (3) Apply HOTAIR filter
  • IL-10 (3) Apply IL-10 filter
  • H19 (3) Apply H19 filter
  • HIV (3) Apply HIV filter
  • Lgr4 (3) Apply Lgr4 filter
  • COL11A1 (3) Apply COL11A1 filter
  • ASPM (3) Apply ASPM filter
  • IL-8 (3) Apply IL-8 filter
  • VEGF (3) Apply VEGF filter
  • Il-6 (3) Apply Il-6 filter
  • MERS-CoV (3) Apply MERS-CoV filter
  • HPV HR7 (3) Apply HPV HR7 filter
  • LINC00473 (3) Apply LINC00473 filter
  • PD-l2 (3) Apply PD-l2 filter
  • HIV-1 (3) Apply HIV-1 filter
  • TNFA (3) Apply TNFA filter
  • CD274 (2) Apply CD274 filter
  • TGFB1 (2) Apply TGFB1 filter
  • Wnt10a (2) Apply Wnt10a filter
  • Wnt10b (2) Apply Wnt10b filter
  • Wnt16 (2) Apply Wnt16 filter
  • Wnt1 (2) Apply Wnt1 filter
  • Wnt6 (2) Apply Wnt6 filter
  • Wnt7b (2) Apply Wnt7b filter

Product

  • (-) Remove RNAscope 2.0 Assay filter RNAscope 2.0 Assay (6)

Research area

  • Cancer (6) Apply Cancer filter

Category

  • Publications (6) Apply Publications filter
BRCA1 germline mutation and glioblastoma development: report of cases

BMC Cancer 15.1 (2015): 1-7.

Boukerroucha M, Josse C, Segers K, El-Guendi S, Frères P, Jerusalem G, Bours V.

Background Germline mutations in breast cancer susceptibility gene 1 (BRCA1) increase the risk of breast and ovarian cancers. However, no association between BRCA1 germline mutation and glioblastoma malignancy has ever been highlighted. Here we report two cases of BRCA1 mutated patients who developed a glioblastoma multiform (GBM). Cases presentation: Two patients diagnosed with triple negative breast cancer (TNBC) were screened for BRCA1 germline mutation. They both carried a pathogenic mutation introducing a premature STOP codon in the exon 11 of the BRCA1 gene. Few years later, both patients developed a glioblastoma and a second breast cancer. In an attempt to clarify the role played by a mutated BRCA1 allele in the GBM development, we investigated the BRCA1 mRNA and protein expression in breast and glioblastoma tumours for both patients. The promoter methylation status of this gene was also tested by methylation specific PCR as BRCA1 expression is also known to be lost by this mechanism in some sporadic breast cancers. Conclusion: Our data show that BRCA1 expression is maintained in glioblastoma at the protein and the mRNA levels, suggesting that loss of heterozygosity (LOH) did not occur in these cases. The protein expression is tenfold higher in the glioblastoma of patient 1 than in her first breast carcinoma, and twice higher in patient 2. In agreement with the high protein expression level in the GBM, BRCA1 promoter methylation was not observed in these tumours. In these two cases, despite of a BRCA1 pathogenic germline mutation, the tumour-suppressor protein expression is maintained in GBM, suggesting that the BRCA1 mutation is not instrumental for the GBM development.
Evaluation of BRCA1-related molecular features and microRNAs as prognostic factors for triple negative breast cancers.

BMC Cancer.

2015 Oct 21

Boukerroucha M, Josse C, ElGuendi S, Boujemla B, Frères P, Marée R, Wenric S, Segers K, Collignon J, Jerusalem G, Bours V.
PMID: 26490435 | DOI: 10.1186/s12885-015-1740-9.

Abstract

BACKGROUND:
The BRCA1 gene plays a key role in triple negative breast cancers (TNBCs), in which its expression can be lost by multiple mechanisms: germinal mutation followed by deletion of the second allele; negative regulation by promoter methylation; or miRNA-mediated silencing. This study aimed to establish a correlation among the BRCA1-related molecular parameters, tumor characteristics and clinical follow-up of patients to find new prognostic factors.

METHODS:
BRCA1 protein and mRNA expression was quantified in situ in the TNBCs of 69 patients. BRCA1 promoter methylation status was checked, as well as cytokeratin 5/6 expression. Maintenance of expressed BRCA1 protein interaction with BARD1 was quantified, as a marker of BRCA1 functionality, and the tumor expression profiles of 27 microRNAs were determined.

RESULTS:
miR-548c-5p was emphasized as a new independent prognostic factor in TNBC. A combination of the tumoral expression of miR-548c and three other known prognostic parameters (tumor size, lymph node invasion and CK 5/6 expression status) allowed for relapse prediction by logistic regression with an area under the curve (AUC) = 0.96. BRCA1 mRNA and protein in situ expression, as well as the amount of BRCA1 ligated to BARD1 in the tumor, lacked any associations with patient outcomes, likely due to high intratumoral heterogeneity, and thus could not be used for clinical purposes.

CONCLUSIONS:
In situ BRCA1-related expression parameters could be used for clinical purposes at the time of diagnosis. In contrast, miR-548c-5p showed a promising potential as a prognostic factor in TNBC.

Analysis of MET mRNA Expression in Gastric Cancers Using RNA In Situ Hybridization Assay: Its Clinical Implication and Comparison with Immunohistochemistry and Silver In Situ Hybridization.

PLoS One. 2014 Nov 3;9(11):e111658.

Choi J, Lee HE, Kim MA, Jang BG, Lee HS, Kim WH.
PMID: 25364819 | DOI: 10.1371/journal.pone.0111658

We investigated MET mRNA expression status using RNA in situ hybridization (ISH) technique in primary and metastatic lesions of 535 surgically resected gastric carcinoma (GC) cases. We compared the results with those of immunohistochemistry and silver in situ hybridization, and examined the association with clinicopathologic characteristics and prognosis. Among 535 primary GCs, 391 (73.1%) were scored 0, 87 (16.3%) were scored 1, 38 (7.1%) were scored 2, 12 (2.2%) were scored 3 and 7 (1.3%) were scored 4 by RNA ISH. High MET mRNA expression (score ≥3) was associated with lymph node metastasis (P = .014), distant metastasis (P = .001), and higher TNM stage (P<.001). MET mRNA expression was correlated with protein expression (r = 0.398; P<.001) and gene copy number (r = 0.345; P<.001). The patients showing high-MET mRNA in primary or metastatic lesions had shorter overall survival than those showing low-MET mRNA (primary tumors, P = .002; metastatic lymph nodes, P<.001). The patients showing positive conversion of MET mRNA status in metastatic lymph node had shorter overall survival than those with no conversion (P = .011). Multivariate analysis demonstrated that high MET mRNA expression in metastatic lymph node was an independent prognostic factor for overall survival (P = .007). Therefore, this study suggests that MET mRNA expression assessed by RNA ISH could be useful as a potential marker to identify MET oncogene-addicted GC.
Transcriptional upregulation of c-MET is associated with invasion and tumor budding in colorectal cancer.

Oncotarget.

2016 Oct 26

Bradley CA, Dunne PD, Bingham V, McQuaid S, Khawaja H, Craig S, James J, Moore WL, McArt DG, Lawler M, Dasgupta S, Johnston PG, Van Schaeybroeck S.
PMID: 27793046 | DOI: 10.18632/oncotarget.12933

c-MET and its ligand HGF are frequently overexpressed in colorectal cancer (CRC) and increased c-MET levels are found in CRC liver metastases. This study investigated the role of the HGF/c-MET axis in regulating migration/invasion in CRC, using pre-clinical models and clinical samples. Pre-clinically, we found marked upregulation of c-MET at both protein and mRNA levels in several invasive CRC cells. Down-regulation of c-MET using RNAi suppressed migration/invasion of parental and invasive CRC cells. Stimulation of CRC cells with rh-HGF or co-culture with HGF-expressing colonic myofibroblasts, resulted in significant increases in their migratory/invasive capacity. Importantly, HGF-induced c-MET activation promoted rapid downregulation of c-MET protein levels, while the MET transcript remained unaltered. Using RNA in situ hybridization (RNA ISH), we further showed that MET mRNA, but not protein levels, were significantly upregulated in tumor budding foci at the invasive front of a cohort of stage III CRC tumors (p < 0.001). Taken together, we show for the first time that transcriptional upregulation of MET is a key molecular event associated with CRC invasion and tumor budding. This data also indicates that RNA ISH, but not immunohistochemistry, provides a robust methodology to assess MET levels as a potential driving force of CRC tumor invasion and metastasis.

Detection of MET mRNA in gastric cancer in situ. Comparison with immunohistochemistry and sandwich immunoassays

Biotech Histochem.

2017 Aug 24

Schmid E, Klotz M, Steiner-Hahn K, Konen T, Frisk AL, Schatz C, Krahn T, von Ahsen O.
PMID: 28836864 | DOI: 10.1080/10520295.2017.1339913

Determination of predictive biomarkers by immunohistochemistry (IHC) relies on antibodies with high selectivity. RNA in situ hybridization (RNA ISH) may be used to confirm IHC and may potentially replace it if suitable antibodies are not available or are insufficiently selective to discriminate closely related protein isoforms. We validated RNA ISH as specificity control for IHC and as a potential alternative method for selecting patients for treatment with MET inhibitors. MET, the HGF receptor, is encoded by the MET proto-oncogene that may be activated by mutation or amplification. MET expression and activity were tested in a panel of control cell lines. MET could be detected in formalin fixed paraffin, embedded (FFPE) samples by IHC and RNA ISH, and this was confirmed by sandwich immunoassays of fresh frozen samples. Gastric cancer cell lines with high MET expression and phosphorylation of tyrosine-1349 respond to the MET inhibitor, BAY-853474. High expression and phosphorylation of MET is a predictive biomarker for response to MET inhibitors. We then analyzed MET expression and activity in a matched set of FFPE vs. fresh frozen tumor samples consisting of 20 cases of gastric cancer. Two of 20 clinical samples investigated exhibited high MET expression with RNA ISH and IHC. Both cases were shown by sandwich immunoassays to exhibits strong functional activity. Expression levels and functional activity in these two cases were in a range that predicted response to treatment. Our findings indicate that owing to its high selectivity, RNA ISH can be used to confirm findings obtained by IHC and potentially may replace IHC for certain targets if no suitable antibodies are available. RNA ISH is a valid platform for testing predictive biomarkers for patient selection.

Functional ex vivo assay to select Homologous Recombination deficient breast tumors for PARP inhibitor treatment

Clin Cancer Res. 2014 Jun 24

Naipal KA, Verkaik NS, Ameziane N, van Deurzen CH, Ter Brugge P, Meijers M, Sieuwerts AM, Martens J, O'Connor MJ, Vrieling H, Hoeijmakers JH, Jonkers J, Kanaar R, de Winter J, Vreeswijk M, Jager A, van Gent DC.
PMID: 24963051

Purpose: Poly(ADP-Ribose) Polymerase (PARP) inhibitors are promising targeted treatment options for hereditary breast tumors with a Homologous Recombination (HR) deficiency caused by BRCA1 or BRCA2 mutations. However, the functional consequence of BRCA gene mutations is not always known and tumors can be HR deficient for other reasons than BRCA gene mutations. Therefore, we aimed to develop a functional test to determine HR activity in tumor samples to facilitate selection of patients eligible for PARP inhibitor treatment. Experimental design: We obtained 54 fresh primary breast tumor samples from patients undergoing surgery. We determined their HR capacity by studying the formation of ionizing radiation induced foci (IRIF) of the HR protein RAD51 after ex vivo irradiation of these organotypic breast tumor samples. Tumors showing impaired RAD51 IRIF formation were subjected to genetic and epigenetic analysis. Results: Five out of 45 primary breast tumors with sufficient numbers of proliferating tumor cells were RAD51 IRIF formation deficient (11%, 95%CI: 5%-24%). This HR defect was significantly associated with Triple Negative Breast Cancer (OR:57, 95%CI: 3.9-825, p=0.003). Two out of five HR deficient tumors were not caused by mutations in the BRCA genes, but by BRCA1 promoter hypermethylation. Conclusion: The functional RAD51 IRIF assay faithfully identifies HR deficient tumors and has clear advantages over gene sequencing. It is a relatively easy assay that can be performed on biopsy material, making it a powerful tool to select patients with an HR-deficient cancer for PARP inhibitor treatment in the clinic.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?