ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Vet Immunol Immunopathol.
2016 Feb 21
McGill JL, Sacco RE.
PMID: 26923879 | DOI: 10.1016/j.vetimm.2016.02.012
γδ T cells are a subset of nonconventional T cells that play a critical role in bridging the innate and adaptive arms of the immune system. γδ T cells are particularly abundant in ruminant species and may constitute up to 60% of the circulating lymphocyte pool in young cattle. The frequency of circulating γδ T cells is highest in neonatal calves and declines as the animal ages, suggesting these cells may be particularly important in the immune system of the very young. Bovine respiratory syncytial virus (BRSV) is a significant cause of respiratory infection in calves, and is most severe in animals under one year of age. BRSV is also a significant factor in the development of bovine respiratory disease complex (BRDC), the leading cause of morbidity and mortality in feedlot cattle. Human respiratory syncytial virus (RSV) is closely related to BRSV and a leading cause of lower respiratory tract infection in infants and children worldwide. BRSV infection in calves shares striking similarities with RSV infection in human infants. To date, there have been few studies defining the role of γδ T cells in the immune response to BRSV or RSV infection in animals or humans, respectively. However, emerging evidence suggests that γδ T cells may play a critical role in the early recognition of infection and in shaping the development of the adaptive immune response through inflammatory chemokine and cytokine production. Further, while it is clear that γδ T cells accumulate in the lungs during BRSV and RSV infection, their role in protection vs. immunopathology remains unclear. This review will summarize what is currently known about the role of γδ T cells in the immune response to BRSV and BRDC in cattle, and where appropriate, draw parallels to the role of γδ T cells in the human response to RSV infection.
Sci Rep.
2017 Oct 05
Wang L, Huang J, Moore DC, Zuo C, Wu Q, Xie L, von der Mark K, Yuan X, Chen D, Warman ML, Ehrlich MG, Yang W.
PMID: 28983104 | DOI: 10.1038/s41598-017-12767-9
Transdifferentiation of hypertrophic chondrocytes into bone-forming osteoblasts has been reported, yet the underlying molecular mechanism remains incompletely understood. SHP2 is an ubiquitously expressed cytoplasmic protein tyrosine phosphatase. SHP2 loss-of-function mutations in chondroid cells are linked to metachondromatosis in humans and mice, suggesting a crucial role for SHP2 in the skeleton. However, the specific role of SHP2 in skeletal cells has not been elucidated. To approach this question, we ablated SHP2 in collagen 2α1(Col2α1)-Cre- and collagen 10α1(Col10α1)-Cre-expressing cells, predominantly proliferating and hypertrophic chondrocytes, using "Cre-loxP"-mediated gene excision. Mice lacking SHP2 in Col2α1-Cre-expressing cells die at mid-gestation. Postnatal SHP2 ablation in the same cell population caused dwarfism, chondrodysplasia and exostoses. In contrast, mice in which SHP2 was ablated in the Col10α1-Cre-expressing cells appeared normal but were osteopenic. Further mechanistic studies revealed that SHP2 exerted its influence partly by regulating the abundance of SOX9 in chondrocytes. Elevated and sustained SOX9 in SHP2-deficient hypertrophic chondrocytes impaired their differentiation to osteoblasts and impaired endochondral ossification. Our study uncovered an important role of SHP2 in bone development and cartilage homeostasis by influencing the osteogenic differentiation of hypertrophic chondrocytes and provided insight into the pathogenesis and potential treatment of skeletal diseases, such as osteopenia and osteoporosis.
JCI insight
2023 Jan 10
Good, PI;Li, L;Hurst, HA;Serrano-Herrera, IM;Xu, K;Rao, M;Bateman, DA;Al-Awqati, Q;D'Agati, VD;Costantini, F;Lin, F;
PMID: 36626229 | DOI: 10.1172/jci.insight.161316
Journal of developmental biology
2022 Feb 10
Vonk, AC;Hasel-Kolossa, SC;Lopez, GA;Hudnall, ML;Gamble, DJ;Lozito, TP;
PMID: 35225965 | DOI: 10.3390/jdb10010012
Cell Tissue Res.
2016 Apr 05
Brenna Ø, Furnes MW, Munkvold B, Kidd M, Sandvik AK, Gustafsson BI.
PMID: 27044258 | DOI: -
Guanylin (GUCA2A/Guca2a/GN) and uroguanylin (GUCA2B/Guca2b/UGN) are expressed in the gastrointestinal tract and have been implicated in ion and fluid homeostasis, satiety, abdominal pain, growth and intestinal barrier integrity. Their cellular sources are debated and include goblet cells, entero-/colonocytes, enteroendocrine (EE) cells and tuft cells. We therefore investigated the cellular sources of GN and UGN mRNAs in human and rat duodenal and colonic epithelium with in situ hybridization (ISH) to determine co-expression with Chromogranin A (CHGA/Chga/CgA; enterochromaffin [EC] cells), defensin alpha 6 (DEFA6/Defa6; Paneth cells), mucin 2 (MUC2/Muc2; goblet cells) and selected tuft cell markers. GUCA2A/Guca2a expression was localized to goblet cells and colonocytes in human and rat colon. In human duodenum, GUCA2A was expressed in Paneth cells and was scarce in villous epithelial cells. In rat duodenum, Guca2a was only localized to goblet cells. Guca2b was focally expressed in rat colon. In human and rat duodenum and in human colon, GUCA2B/Guca2b was expressed in dispersed solitary epithelial cells, some with a tuft cell-like appearance. Neither GUCA2A nor GUCA2B were co-expressed with CHGA in human duodenal cells. Consequently, EC cells are probably not the major source of human GN or UGN but other EE cells as a source of GN or UGN are not entirely excluded. No convincing overlap with tuft cell markers was found. For the first time, we demonstrate the cellular expression of GUCA2B in human duodenum. The specific cellular distribution of both GN and UGN differs between duodenum and colon and between human and rat intestines.
Arteriosclerosis, thrombosis, and vascular biology
2022 Jun 23
Owsiany, KM;Deaton, RA;Soohoo, KG;Tram Nguyen, A;Owens, GK;
PMID: 35735018 | DOI: 10.1161/ATVBAHA.122.317882
Developmental cell
2023 Mar 27
Chen, HJ;Barske, L;Talbot, JC;Dinwoodie, OM;Roberts, RR;Farmer, DT;Jimenez, C;Merrill, AE;Tucker, AS;Crump, JG;
PMID: 36905926 | DOI: 10.1016/j.devcel.2023.02.011
JBMR Plus (2018)
2018 Dec 07
Miura Y, Ota S, Peterlin M, McDevitt G, Kanazawa S.
| DOI: 10.1002/jbm4.10132
Fluids and barriers of the CNS
2022 Aug 30
Errede, M;Annese, T;Petrosino, V;Longo, G;Girolamo, F;de Trizio, I;d'Amati, A;Uccelli, A;Kerlero de Rosbo, N;Virgintino, D;
PMID: 36042496 | DOI: 10.1186/s12987-022-00365-5
OncoImmunology
2017 Jun 19
Kersten K, Coffelt SB, Hoogstraat M, Verstegen NJM, Vrijland K, Ciampricotti M, Doornebal CW, Hau CS, Wellenstein MD, Salvagno C, Doshi P, Lips EH, Wessels LFH, de Visser KE.
PMID: - | DOI: 10.1080/2162402X.2017.1334744
Patients with primary solid malignancies frequently exhibit signs of systemic inflammation. Notably, elevated levels of neutrophils and their associated soluble mediators are regularly observed in cancer patients, and correlate with reduced survival and increased metastasis formation. Recently, we demonstrated a mechanistic link between mammary tumor-induced IL17-producing γδ T cells, systemic expansion of immunosuppressive neutrophils and metastasis formation in a genetically engineered mouse model for invasive breast cancer. How tumors orchestrate this systemic inflammatory cascade to facilitate dissemination remains unclear. Here we show that activation of this cascade relies on CCL2-mediated induction of IL1β in tumor-associated macrophages. In line with these findings, expression of CCL2 positively correlates with IL1Β and macrophage markers in human breast tumors. We demonstrate that blockade of CCL2 in mammary tumor-bearing mice results in reduced IL17 production by γδ T cells, decreased neutrophil expansion and enhanced CD8+ T cell activity. These results highlight a new role for CCL2 in facilitating the breast cancer-induced pro-metastatic systemic inflammatory γδ T cell – IL17 – neutrophil axis.
iScience
2021 Jul 01
Shadrach, J;Stansberry, W;Milen, A;Ives, R;Fogarty, E;Antonellis, A;Pierchala, B;
| DOI: 10.1016/j.isci.2021.102700
Brain, behavior, and immunity
2022 Jan 18
Lehmann, ML;Samuels, JD;Kigar, SL;Poffenberger, CN;Lotstein, ML;Herkenham, M;
PMID: 35063606 | DOI: 10.1016/j.bbi.2022.01.011
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com