ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cellular and molecular gastroenterology and hepatology
2022 Jan 21
Douchi, D;Yamamura, A;Matsuo, J;Lee, JW;Nuttonmanit, N;Melissa Lim, YH;Suda, K;Shimura, M;Chen, S;Pang, S;Kohu, K;Kaneko, M;Kiyonari, H;Kaneda, A;Yoshida, H;Taniuchi, I;Osato, M;Yang, H;Unno, M;Bok-Yan So, J;Yeoh, KG;Huey Chuang, LS;Bae, SC;Ito, Y;
PMID: 35074568 | DOI: 10.1016/j.jcmgh.2022.01.010
Transl Psychiatry.
2018 Feb 26
Zhang L, Hernández VS, Swinny JD, Verma AK, Giesecke T, Emery AC, Mutig K, Garcia-Segura LM, Eiden LE.
PMID: 29479060 | DOI: 10.1038/s41398-018-0099-5
The lateral habenula (LHb) has a key role in integrating a variety of neural circuits associated with reward and aversive behaviors. There is limited information about how the different cell types and neuronal circuits within the LHb coordinate physiological and motivational states. Here, we report a cell type in the medial division of the LHb (LHbM) in male rats that is distinguished by: (1) a molecular signature for GABAergic neurotransmission (Slc32a1/VGAT) and estrogen receptor (Esr1/ERα) expression, at both mRNA and protein levels, as well as the mRNA for vesicular glutamate transporter Slc17a6/VGLUT2, which we term the GABAergic estrogen-receptive neuron (GERN); (2) its axonal projection patterns, identified by in vivo juxtacellular labeling, to both local LHb and to midbrain modulatory systems; and (3) its somatic expression of receptors for vasopressin, serotonin and dopamine, and mRNA for orexin receptor 2. This cell type is anatomically located to receive afferents from midbrain reward (dopamine and serotonin) and hypothalamic water and energy homeostasis (vasopressin and orexin) circuits. These afferents shared the expression of estrogen synthase (aromatase) and VGLUT2, both in their somata and axon terminals. We demonstrate dynamic changes in LHbM VGAT+ cell density, dependent upon gonadal functional status, that closely correlate with motivational behavior in response to predator and forced swim stressors. The findings suggest that the homeostasis and reward-related glutamatergic convergent projecting pathways to LHbMC employ a localized neurosteroid signaling mechanism via axonal expression of aromatase, to act as a switch for GERN excitation/inhibition output prevalence, influencing depressive or motivated behavior.
Neuropharmacology.
2018 Jul 06
Sabetghadam A, Grabowiecka-Nowak A, Kania A, Gugula A, Blasiak E, Blasiak T, Ma S, Gundlach AL, Blasiak A.
PMID: 29981758 | DOI: 10.1016/j.neuropharm.2018.07.004
The rat nucleus incertus (NI) contains GABA/peptide-projection neurons responsive to orexin (hypocretin)/orexin receptor-2 (OX2) signalling. Melanin-concentrating hormone (MCH) and orexin neurons often innervate and influence common target areas. Therefore, we assessed the relationship between these hypothalamic peptidergic systems and rat NI, by investigating the presence of an MCH innervation and MCH receptor-1 (MCH1) expression, and neurophysiological and behavioural effects of MCH c.f. orexin-A (OXA), within the NI. We identified lateral hypothalamus (LH), perifornical and sub-zona incerta MCH neurons that innervate NI, and characterised the rostrocaudal distribution of MCH-containing fibres in NI. Single-cell RT-PCR detected MCH1 and OX2 mRNA in NI, and multiplex, fluorescent in situ hybridisation revealed distinct co-expression patterns of MCH1 and OX2 mRNA in NI neurons expressing vesicular GABA transporter (vGAT) mRNA. Patch-clamp recordings revealed 34% of NI neurons tested were hyperpolarised by MCH (1 μM), representing a distinct population from OXA-sensitive NI neurons (35%). Intra-NI OXA infusion (600 pmol) in satiated rats during the light/inactive phase produced increased locomotor activity and food (standard chow) intake, whereas intra-NI MCH infusion (600 pmol) produced only a trend for decreased locomotor activity and no effect on food intake. Furthermore, in satiated or pre-fasted rats tested during the dark/active phase, intra-NI infusion of MCH did not alter the elevated locomotor activity or higher food intake observed. However, quantification of neuropeptide-immunostaining revealed differential diurnal fluctuations in orexin and MCH trafficking to NI. Our findings identify MCH and orexin inputs onto divergent NI populations which may differentially influence arousal and motivated behaviours.
Front Mol Neurosci.
2018 Jun 19
Lee S, Lee E, Kim R, Kim J, Lee S, Park H, Yang E, Kim H, Kim E.
PMID: 29970987 | DOI: 10.3389/fnmol.2018.00209
Shank2 is an abundant postsynaptic scaffolding protein implicated in neurodevelopmental and psychiatric disorders, including autism spectrum disorders (ASD). Deletion of Shank2 in mice has been shown to induce social deficits, repetitive behaviors, and hyperactivity, but the identity of the cell types that contribute to these phenotypes has remained unclear. Here, we report a conditional mouse line with a Shank2 deletion restricted to parvalbumin (PV)-positive neurons (Pv-Cre;Shank2fl/fl mice). These mice display moderate hyperactivity in both novel and familiar environments and enhanced self-grooming in novel, but not familiar, environments. In contrast, they showed normal levels of social interaction, anxiety-like behavior, and learning and memory. Basal brain rhythms in Pv-Cre;Shank2fl/fl mice, measured by electroencephalography, were normal, but susceptibility to pentylenetetrazole (PTZ)-induced seizures was decreased. These results suggest that Shank2 deletion in PV-positive neurons leads to hyperactivity, enhanced self-grooming and suppressed brain excitation.
Neuron
2022 Sep 23
Yao, Y;Barger, Z;Saffari Doost, M;Tso, CF;Darmohray, D;Silverman, D;Liu, D;Ma, C;Cetin, A;Yao, S;Zeng, H;Dan, Y;
PMID: 36170850 | DOI: 10.1016/j.neuron.2022.08.027
International journal of molecular sciences
2022 Jan 13
Capellero, S;Erriquez, J;Battistini, C;Porporato, R;Scotto, G;Borella, F;Di Renzo, MF;Valabrega, G;Olivero, M;
PMID: 35055018 | DOI: 10.3390/ijms23020833
Nature communications
2021 May 11
Kim, SG;Lee, S;Kim, Y;Park, J;Woo, D;Kim, D;Li, Y;Shin, W;Kang, H;Yook, C;Lee, M;Kim, K;Roh, JD;Ryu, J;Jung, H;Um, SM;Yang, E;Kim, H;Han, J;Heo, WD;Kim, E;
PMID: 33976205 | DOI: 10.1038/s41467-021-22908-4
Neuron.
2018 Jul 17
Cheadle L, Tzeng CP, Kalish BT, Harmin DA, Rivera S, Ling E, Nagy MA, Hrvatin S, Hu L, Stroud H, Burkly LC, Chen C, Greenberg ME.
PMID: 30033152 | DOI: 10.1016/j.neuron.2018.06.036
Sensory experience influences the establishment of neural connectivity through molecular mechanisms that remain unclear. Here, we employ single-nucleus RNA sequencing to investigate the contribution of sensory-driven gene expression to synaptic refinement in the dorsal lateral geniculate nucleus of the thalamus, a region of the brain that processes visual information. We find that visual experience induces the expression of the cytokine receptor Fn14 in excitatory thalamocortical neurons. By combining electrophysiological and structural techniques, we show that Fn14 is dispensable for early phases of refinement mediated by spontaneous activity but that Fn14 is essential for refinement during a later, experience-dependent period of development. Refinement deficits in mice lacking Fn14 are associated with functionally weaker and structurally smaller retinogeniculate inputs, indicating that Fn14 mediates both functional and anatomical rearrangements in response to sensory experience. These findings identify Fn14 as a molecular link between sensory-driven gene expression and vision-sensitive refinement in the brain.
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
2023 Mar 24
Yi, T;Wang, N;Huang, J;Wang, Y;Ren, S;Hu, Y;Xia, J;Liao, Y;Li, X;Luo, F;Ouyang, Q;Li, Y;Zheng, Z;Xiao, Q;Ren, R;Yao, Z;Tang, X;Wang, Y;Chen, X;He, C;Li, H;Hu, Z;
PMID: 36961096 | DOI: 10.1002/advs.202300189
Nature communications
2022 Jun 07
Lecoin, L;Dempsey, B;Garancher, A;Bourane, S;Ruffault, PL;Morin-Surun, MP;Rocques, N;Goulding, M;Eychène, A;Pouponnot, C;Fortin, G;Champagnat, J;
PMID: 35672398 | DOI: 10.1038/s41467-022-30825-3
Scientific reports
2022 Mar 30
Minatoguchi, S;Saito, S;Furuhashi, K;Sawa, Y;Okazaki, M;Shimamura, Y;Kaihan, AB;Hashimoto, Y;Yasuda, Y;Hara, A;Mizutani, Y;Ando, R;Kato, N;Ishimoto, T;Tsuboi, N;Esaki, N;Matsuyama, M;Shiraki, Y;Kobayashi, H;Asai, N;Enomoto, A;Maruyama, S;
PMID: 35354870 | DOI: 10.1038/s41598-022-09331-5
Basic Res Cardiol.
2018 Jun 04
Mouton AJ, DeLeon-Pennell KY, Rivera Gonzalez OJ, Flynn ER, Freeman TC, Saucerman JJ, Garrett MR, Ma Y, Harmancey R, Lindsey ML.
PMID: 29868933 | DOI: 10.1007/s00395-018-0686-x
In response to myocardial infarction (MI), cardiac macrophages regulate inflammation and scar formation. We hypothesized that macrophages undergo polarization state changes over the MI time course and assessed macrophage polarization transcriptomic signatures over the first week of MI. C57BL/6 J male mice (3-6 months old) were subjected to permanent coronary artery ligation to induce MI, and macrophages were isolated from the infarct region at days 1, 3, and 7 post-MI. Day 0, no MI resident cardiac macrophages served as the negative MI control. Whole transcriptome analysis was performed using RNA-sequencing on n = 4 pooled sets for each time. Day 1 macrophages displayed a unique pro-inflammatory, extracellular matrix (ECM)-degrading signature. By flow cytometry, day 0 macrophages were largely F4/80highLy6Clow resident macrophages, whereas day 1 macrophages were largely F4/80lowLy6Chigh infiltrating monocytes. Day 3 macrophages exhibited increased proliferation and phagocytosis, and expression of genes related to mitochondrial function and oxidative phosphorylation, indicative of metabolic reprogramming. Day 7 macrophages displayed a pro-reparative signature enriched for genes involved in ECM remodeling and scar formation. By triple in situ hybridization, day 7 infarct macrophages in vivo expressed collagen I and periostin mRNA. Our results indicate macrophages show distinct gene expression profiles over the first week of MI, with metabolic reprogramming important for polarization. In addition to serving as indirect mediators of ECM remodeling, macrophages are a direct source of ECM components. Our study is the first to report the detailed changes in the macrophage transcriptome over the first week of MI.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com