Knockdown of circROBO2 attenuates acute myocardial infarction through regulating the miR-1184/TRADD axis
Molecular medicine (Cambridge, Mass.)
Chen, TP;Zhang, NJ;Wang, HJ;Hu, SG;Geng, X;
PMID: 33658002 | DOI: 10.1186/s10020-021-00275-6
Studies have found that circular RNAs (circRNAs) play key roles in cardiovascular diseases. However, the function of circROBO2 in acute myocardial infarction (AMI) is unclear. This study aimed to investigate the pathogenesis of circROBO2 in AMI. qRT-PCR and Western blot were used to determine the expression levels of circROBO2, miR-1184, and TRADD in AMI and sham-operated mouse models at mRNA and protein level, respectively. The relationship among miR-1184, circROBO2 and TRADD was evaluated by RNA immunoprecipitation (RIP) analysis and luciferase reporter gene analysis. The roles of circROBO2, miR-1184, and TRADD in myocardial cell apoptosis were evaluated using flow cytometry. Ultrasound echocardiography, serum creatine kinase MB (CK-MB) and lactate dehydrogenase (LDH), myocardial infarction area, and myocardial cell apoptosis were measured to examine the effects of circROBO2 on myocardial injury. The expression levels of miR-1184 were significantly reduced, and the expression levels of circROBO2 and TRADD were significantly increased in MI group. CircROBO2 acted as a sponge for miR-1184 by upregulating the expression of TRADD. In addition, overexpression of miR-1184 enhanced the protective effect of knockdown of circROBO2 by partially inhibiting the expression of TRADD in vivo and in vitro. Knockdown of circROBO2 reduced the apoptosis of cardiomyocytes by increasing the expression levels of miR-1184, which in turn decreased the expression levels of TRADD in the myocardium post-MI.
EZH2 is required for parathyroid and thymic development through differentiation of the third pharyngeal pouch endoderm
Disease models & mechanisms
Caprio, C;Lania, G;Bilio, M;Ferrentino, R;Chen, L;Baldini, A;
PMID: 33608392 | DOI: 10.1242/dmm.046789
The Ezh2 gene encodes a histone methyltransferase of the Polycomb Repressive Complex 2 that methylates histone H3 lysine 27. In this work we asked whether EZH2 has a role in the development of the pharyngeal apparatus and whether it regulates the expression of the Tbx1 gene, which encodes a key transcription factor required in pharyngeal development. To these ends, we performed genetic in vivo experiments with mouse embryos and we used mouse embryonic stem cell (ESC)-based protocols to probe endoderm and cardiogenic mesoderm differentiation. Results showed that EZH2 occupies the Tbx1 gene locus in mouse embryos, and that suppression of EZH2 was associated with reduced expression of Tbx1 in differentiated mESCs. Conditional deletion of Ezh2 in the Tbx1 expression domain, which includes the pharyngeal endoderm, did not cause cardiac defects but revealed that the gene has an important role in the morphogenesis of the 3rd pharyngeal pouch (PP). We found that in conditionally deleted embryos the 3rd PP was hypoplastic, had reduced expression of Tbx1, lacked the expression of Gcm2, a gene that marks the parathyroid domain, but expressed FoxN1, a gene marking the thymic domain. Consistently, the parathyroids did not develop, and the thymus was hypoplastic. Thus, Ezh2 is required for parathyroid and thymic development, probably through a function in the pouch endoderm. This discovery also provides a novel interpretational key for the finding of Ezh2 activating mutations in hyperparathyroidism and parathyroid cancer.
Down-regulation of habenular calcium-dependent secretion activator 2 induces despair-like behavior
Yoo, H;Yang, SH;Kim, JY;Yang, E;Park, HS;Lee, SJ;Rhyu, IJ;Turecki, G;Lee, HW;Kim, H;
PMID: 33580180 | DOI: 10.1038/s41598-021-83310-0
Calcium-dependent secretion activator 2 (CAPS2) regulates the trafficking and exocytosis of neuropeptide-containing dense-core vesicles (DCVs). CAPS2 is prominently expressed in the medial habenula (MHb), which is related to depressive behavior; however, how MHb neurons cause depressive symptoms and the role of CAPS2 remains unclear. We hypothesized that dysfunction of MHb CAPS neurons might cause defects in neuropeptide secretion and the activity of monoaminergic centers, resulting in depressive-like behaviors. In this study, we examined (1) CAPS2 expression in the habenula of depression animal models and major depressive disorder patients and (2) the effects of down-regulation of MHb CAPS2 on the animal behaviors, synaptic transmission in the interpeduncular nucleus (IPN), and neuronal activity of monoamine centers. Habenular CAPS2 expression was decreased in the rat chronic restraint stress model, mouse learned helplessness model, and showed tendency to decrease in depression patients who died by suicide. Knockdown of CAPS2 in the mouse habenula evoked despair-like behavior and a reduction of the release of DCVs in the IPN. Neuronal activity of IPN and monoaminergic centers was also reduced. These results implicate MHb CAPS2 as playing a pivotal role in depressive behavior through the regulation of neuropeptide secretion of the MHb-IPN pathway and the activity of monoaminergic centers.
CXCR7 ameliorates myocardial infarction as a β-arrestin-biased receptor
Ishizuka, M;Harada, M;Nomura, S;Ko, T;Ikeda, Y;Guo, J;Bujo, S;Yanagisawa-Murakami, H;Satoh, M;Yamada, S;Kumagai, H;Motozawa, Y;Hara, H;Fujiwara, T;Sato, T;Takeda, N;Takeda, N;Otsu, K;Morita, H;Toko, H;Komuro, I;
PMID: 33564089 | DOI: 10.1038/s41598-021-83022-5
Most seven transmembrane receptors (7TMRs) are G protein-coupled receptors; however, some 7TMRs evoke intracellular signals through β-arrestin as a biased receptor. As several β-arrestin-biased agonists have been reported to be cardioprotective, we examined the role of the chemokine receptor CXCR7 as a β-arrestin-biased receptor in the heart. Among 510 7TMR genes examined, Cxcr7 was the most abundantly expressed in the murine heart. Single-cell RNA-sequencing analysis revealed that Cxcr7 was abundantly expressed in cardiomyocytes and fibroblasts. Cardiomyocyte-specific Cxcr7 null mice showed more prominent cardiac dilatation and dysfunction than control mice 4 weeks after myocardial infarction. In contrast, there was no difference in cardiac phenotypes between fibroblast-specific Cxcr7-knockout mice and control mice even after myocardial infarction. TC14012, a specific agonist of CXCR7, significantly recruited β-arrestin to CXCR7 in CXCR7-expressing cells and activated extracellular signal-regulated kinase (ERK) in neonatal rat cardiomyocytes. Cxcr7 expression was significantly increased and ERK was activated in the border zone of the heart in control, but not Cxcr7 null mice. These results indicate that the abundantly expressed CXCR7 in cardiomyocytes may play a protective role in the heart as a β-arrestin-biased receptor and that CXCR7 may be a novel therapeutic target for myocardial infarction.
Effects of paclitaxel in mitochondrial function and cellular phenotype in human peripheral blood mononuclear cells and monocytes
Fonseca, M;Morgan, J;Brooks, T;Lycan, T;Strowd, R;Cubillos-Ruiz, J;Romero-Sandoval, E;
| DOI: 10.1016/j.jpain.2021.03.013
Chemotherapy-induced neuropathy (CIPN) is a common complication of paclitaxel. CIPN affects the quality of life of cancer survivors and frequently leads to discontinuation of treatment. Paclitaxel affects neuronal microtubules and induces neuronal mitochondrial dysfunction. However, there is limited clinical information regarding paclitaxel's effects on monocytes. Preclinical studies suggest that paclitaxel-induced neuronal damage is driven by monocytes/macrophages. Therefore, we evaluated whether paclitaxel selectively induces mitochondrial dysfunction and a pro-inflammatory phenotype in human circulating monocytes. We conducted studies in human primary peripheral blood mononuclear cells (PBMCs) from cancer patients being treated with paclitaxel, and in vitro analysis in PBMC cells and monocytes, and THP-1 monocytes in the presence of paclitaxel (0.1, 1, 10 uM). We used flow cytometric markers to study mitochondrial reactive oxygen species (ROS) and mitochondrial membrane potential, namely MitoSox and DIOC6(3) respectively. We also measured mRNA levels of pro- and anti-inflammatory molecules using qRT-PCR. In vitro paclitaxel induced a depolarization state in mitochondria in THP-1, human primary monocytes, and primary human PBMCs, but it did not change MitoSox. Monocytes in PBMCs cells from patients treated with paclitaxel showed significative depolarization state in mitochondria when compared to cells from control patients. In THP-1 cells, paclitaxel enhanced mRNA levels of the pro-inflammatory cytokines IL-8 and TNF alpha. In human primary PBMCs, paclitaxel reduced the anti-inflammatory factors CD163 and IL-10, and enhanced the TNF alpha, COX-2 and MCP-1 mRNA levels. Our study provides evidence that paclitaxel can induce mitochondrial dysfunction in isolated human monocytes and in monocytes present in total PBMCs cells. The observed depolarizing changes are indicative of a pro-mitophagy state, which is in accordance with the paclitaxel-induced pro-inflammatory phenotype in these cells. Early detection of mitochondria dysfunction in human monocytes could be a predictable sign to CIPN development in cancer patients. Our research was supported by the Early-Career Investigator Award W81XWH-16-1-0438 of the Department of Defense, The Pershing Square Sohn Cancer Research Alliance, Weill Cornell Medicine Funds, Department of Anesthesiology-Wake Forest School of Medicine Funds, Comprehensive Cancer Center-Wake Forest School of Medicine Funds, NIDA R21CA248106, National Center for Advancing Translational Sciences (NCATS)-NIH through Grant Award Number UL1TR001420. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Free fatty-acid receptor 4 inhibitory signaling in delta cells regulates islet hormone secretion in mice
Croze, ML;Flisher, MF;Guillaume, A;Tremblay, C;Noguchi, GM;Granziera, S;Vivot, K;Castillo, VC;Campbell, SA;Ghislain, J;Huising, MO;Poitout, V;
PMID: 33484949 | DOI: 10.1016/j.molmet.2021.101166
Maintenance of glucose homeostasis requires the precise regulation of hormone secretion from the endocrine pancreas. Free fatty-acid receptor 4 (FFAR4/GPR120) is a G protein-coupled receptor whose activation in islets of Langerhans promotes insulin and glucagon secretion and inhibits somatostatin secretion. However, the contribution of individual islet cell types (α, β, and δ cells) to the insulinotropic and glucagonotropic effects of GPR120 remains unclear. As gpr120 mRNA is enriched in somatostatin-secreting δ cells, we hypothesized that GPR120 activation stimulates insulin and glucagon secretion via inhibition of somatostatin release. Glucose tolerance tests were performed in mice after administration of the selective GPR120 agonist Compound A. Insulin, glucagon and somatostatin secretion were measured in static incubations of isolated mouse islets in response to endogenous (ω-3 polyunsaturated fatty acids) and/or pharmacological (Compound A and AZ-13581837) GPR120 agonists. The effect of Compound A on hormone secretion was tested further in islets isolated from mice with global or somatostatin cell-specific knockout of gpr120. Gpr120 expression was assessed in pancreatic sections by RNA in situ hybridization. Cyclic AMP (cAMP) and calcium dynamics in response to pharmacological GPR120 agonists were measured specifically in α, β and δ cells in intact islets using cAMPER and GCaMP6 reporter mice, respectively. Acute exposure to Compound A increased glucose tolerance and circulating insulin and glucagon levels in vivo. Endogenous and/or pharmacological and GPR120 agonists reduced somatostatin secretion in isolated islets and concomitantly demonstrated dose-dependent potentiation of glucose-stimulated insulin secretion and arginine-stimulated glucagon secretion. Gpr120 was enriched in δ cells. Pharmacological GPR120 agonists reduced cAMP and calcium levels in δ cells but increased these signals in α and β cells. Compound A-mediated inhibition of somatostatin secretion was insensitive to pertussis toxin. The effect of Compound A on hormone secretion was completely absent in islets from mice with either global or somatostatin cell-specific deletion of gpr120 and was partially reduced upon blockade of somatostatin receptor signaling by cyclosomatostatin. Inhibitory GPR120 signaling in δ cells contributes to both insulin and glucagon secretion in part via mitigating somatostatin release.
Journal of Neuroendocrinology
Watanabe, Y;Prescott, M;Campbell, R;Jasoni, C;
| DOI: 10.1111/jne.13058
Prenatal exposure to excess androgens is associated with the development of polycystic ovary syndrome (PCOS). In prenatally androgenised (PNA) mice, a model of PCOS, progesterone receptor (PR) protein expression is reduced in arcuate nucleus (ARC) GABA neurons. This suggests a mechanism for PCOS-related impaired steroid hormone feedback and implicates androgen excess in inducing transcriptional repression of the PR-encoding gene _Pgr_ in the ARC. However, the androgen sensitivity of ARC neurons and the relative gene expression of progesterone receptors over development and following prenatal androgen exposure remain unknown. Here we used RT-qPCR of microdissected ARC to determine the relative androgen receptor (_Ar_) and progesterone receptor (_Pgr_) gene expression in PNA and control mice at 5 developmental timepoints. In two-way ANOVA analysis, none of the genes examined showed expression changes with a statistically significant interaction between treatment and age, although _PgrA_ showed a borderline interaction. For all genes, there was a statistically significant main effect of age on expression levels, reflecting a general increase in expression with increasing age, regardless of treatment. For _PgrB_ and _Ar_, there was a statistically significant main effect of treatment, indicating a change in expression following PNA - increased for _PgrB_ and decreased for _Ar_ - regardless of age. For _PgrA_ there was a borderline main effect of treatment, suggesting a possible change in expression following PNA, regardless of age. _PgrAB_ gene expression changes showed no significant main effect of treatment. We additionally examined androgen and progesterone responsiveness specifically in P60 ARC GABA neurons by using RNAScope _in situ_ hybridization. This analysis revealed that _Pgr_ and _Ar_ were expressed in the majority of ARC GABA neurons in normal adult females. However, our RNAScope analysis did not show significant changes in _Pgr_ or _Ar_ expression within ARC GABA neurons following PNA. Lastly, as GABA drive to GnRH neurons is increased in PNA, we hypothesised that PNA mice would show increased expression of glutamic acid decarboxylase (GAD), the rate-limiting enzyme in GABA production. However, RT-qPCR showed that the expression of GAD encoding genes (_Gad1_ and _Gad2_) was unchanged in adult PNA mice compared to controls. Our findings indicate that PNA treatment can impact _Pgr_ and _Ar_ mRNA expression in adulthood. This may reflect altered circulating steroid hormones in PNA mice or PNA-induced epigenetic changes in the regulation of _Pgr_ and _Ar_ gene expression in ARC neurons.
Zhao, M;Liu, L;Chen, Z;Ding, N;Wen, J;Liu, J;Ge, N;Zhang, X;
| DOI: 10.1097/j.pain.0000000000002616
The TRPM3 channel is a recently recognized noxious heat sensor that is involved in inflammatory thermal hyperalgesia. To examine its involvement in the development of hyperalgesia in interstitial cystitis/painful bladder syndrome (IC/PBS), rats with cyclophosphamide (CYP)-induced chronic cystitis were used as a model of IC/PBS. Mechanical and thermal hyperalgesia in lower abdominal region overlying the bladder in CYP rats were measured using von Frey filaments and radiant heat, respectively. TRPM3 expression at the mRNA, protein, and functional levels in dorsal root ganglion (DRG) neurons innervating the bladder was detected using RNA in situ hybridization (RNAscope), western blotting, immunohistochemistry, and Ca2+ imaging, respectively. TRPM3 channels were expressed on most of the bladder primary afferent nerve terminals containing calcitonin gene-related peptide (CGRP) and their cell bodies in L6-S1 DRGs. Activation of TRPM3 in the bladder wall by its specific agonists pregnenolone sulphate (PS) or CIM0216 induced spontaneous bladder pain, CGRP release and neurogenic inflammation which was evidenced by edema, plasma extravasation, inflammatory cell accumulation, and mast cell infiltration. In CYP rats, pretreatment with the TRPM3 antagonist primidone (2 mg/kg, i.p.) significantly alleviated the mechanical and thermal hyperalgesia, bladder submucosal edema, mast cell infiltration and bladder hyperactivity. CYP-induced cystitis was associated with TRPM3 upregulation at the mRNA, protein, and functional levels in bladder afferent neurons. Our results suggest that upregulation of TRPM3 channels is involved in the development of chronic pain in CYP-induced cystitis, and targeting TRPM3 may be a pharmacological strategy for treating bladder pain in IC/PBS.
Casazza, RL;Philip, DT;Lazear, HM;
PMID: 35471083 | DOI: 10.1128/mbio.03857-21
Interferon lambda (IFN-λ) (type III IFN) is constitutively secreted from human placental cells in culture and reduces Zika virus (ZIKV) transplacental transmission in mice. However, the roles of IFN-λ during healthy pregnancy and in restricting congenital infection remain unclear. Here, we used mice lacking the IFN-λ receptor (Ifnlr1-/-) to generate pregnancies lacking either maternal or fetal IFN-λ responsiveness and found that the antiviral effect of IFN-λ resulted from signaling exclusively in maternal tissues. This protective effect depended on gestational stage, as infection earlier in pregnancy (E7 rather than E9) resulted in enhanced transplacental transmission of ZIKV. In Ifnar1-/- dams, which sustain robust ZIKV infection, maternal IFN-λ signaling caused fetal resorption and intrauterine growth restriction. Pregnancy pathology elicited by poly(I·C) treatment also was mediated by maternal IFN-λ signaling, specifically in maternal leukocytes, and also occurred in a gestational stage-dependent manner. These findings identify an unexpected effect of IFN-λ signaling, specifically in maternal (rather than placental or fetal) tissues, which is distinct from the pathogenic effects of IFN-αβ (type I IFN) during pregnancy. These results highlight the complexity of immune signaling at the maternal-fetal interface, where disparate outcomes can result from signaling at different gestational stages. IMPORTANCE Pregnancy is an immunologically complex situation, which must balance protecting the fetus from maternal pathogens with preventing maternal immune rejection of non-self fetal and placental tissue. Cytokines, such as interferon lambda (IFN-λ), contribute to antiviral immunity at the maternal-fetal interface. We found in a mouse model of congenital Zika virus infection that IFN-λ can have either a protective antiviral effect or cause immune-mediated pathology, depending on the stage of gestation when IFN-λ signaling occurs. Remarkably, both the protective and pathogenic effects of IFN-λ occurred through signaling exclusively in maternal immune cells rather than in fetal or placental tissues or in other maternal cell types, identifying a new role for IFN-λ at the maternal-fetal interface.
Proceedings of the National Academy of Sciences of the United States of America
Fougère, M;van der Zouwen, CI;Boutin, J;Neszvecsko, K;Sarret, P;Ryczko, D;
PMID: 34670837 | DOI: 10.1073/pnas.2110934118
In Parkinson's disease (PD), the loss of midbrain dopaminergic cells results in severe locomotor deficits, such as gait freezing and akinesia. Growing evidence indicates that these deficits can be attributed to the decreased activity in the mesencephalic locomotor region (MLR), a brainstem region controlling locomotion. Clinicians are exploring the deep brain stimulation of the MLR as a treatment option to improve locomotor function. The results are variable, from modest to promising. However, within the MLR, clinicians have targeted the pedunculopontine nucleus exclusively, while leaving the cuneiform nucleus unexplored. To our knowledge, the effects of cuneiform nucleus stimulation have never been determined in parkinsonian conditions in any animal model. Here, we addressed this issue in a mouse model of PD, based on the bilateral striatal injection of 6-hydroxydopamine, which damaged the nigrostriatal pathway and decreased locomotor activity. We show that selective optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus in mice expressing channelrhodopsin in a Cre-dependent manner in Vglut2-positive neurons (Vglut2-ChR2-EYFP mice) increased the number of locomotor initiations, increased the time spent in locomotion, and controlled locomotor speed. Using deep learning-based movement analysis, we found that the limb kinematics of optogenetic-evoked locomotion in pathological conditions were largely similar to those recorded in intact animals. Our work identifies the glutamatergic neurons of the cuneiform nucleus as a potentially clinically relevant target to improve locomotor activity in parkinsonian conditions. Our study should open avenues to develop the targeted stimulation of these neurons using deep brain stimulation, pharmacotherapy, or optogenetics.
Active role of the central amygdala in widespread mechanical sensitization in rats with facial inflammatory pain
Sugimoto, M;Takahashi, Y;Sugimura, YK;Tokunaga, R;Yajima, M;Kato, F;
PMID: 33900711 | DOI: 10.1097/j.pain.0000000000002224
Widespread or ectopic sensitization is a hallmark symptom of chronic pain, characterized by aberrantly enhanced pain sensitivity in multiple body regions remote from the site of original injury or inflammation. The central mechanism underlying widespread sensitization remains unidentified. The central nucleus of the amygdala (also called the central amygdala, CeA) is well situated for this role because it receives nociceptive information from diverse body sites and modulates pain sensitivity in various body regions. In this study, we examined the role of the CeA in a novel model of ectopic sensitization of rats. Injection of formalin into the left upper lip resulted in latent bilateral sensitization in the hind paw lasting >13 days in male Wistar rats. Chemogenetic inhibition of gamma-aminobutyric acid-ergic neurons or blockade of calcitonin gene-related peptide receptors in the right CeA, but not in the left, significantly attenuated this sensitization. Furthermore, chemogenetic excitation of gamma-aminobutyric acid-ergic neurons in the right CeA induced de novo bilateral hind paw sensitization in the rats without inflammation. These results indicate that the CeA neuronal activity determines hind paw tactile sensitivity in rats with remote inflammatory pain. They also suggest that the hind paw sensitization used in a large number of preclinical studies might not be simply a sign of the pain at the site of injury but rather a representation of the augmented CeA activity resulting from inflammation/pain in any part of the body or from activities of other brain regions, which has an active role of promoting defensive/protective behaviors to avoid further bodily damage.
Lavertu-Jolin, M;Chattopadhyaya, B;Chehrazi, P;Carrier, D;Wünnemann, F;Leclerc, S;Dumouchel, F;Robertson, D;Affia, H;Saba, K;Gopal, V;Patel, AB;Andelfinger, G;Pineyro, G;Di Cristo, G;
PMID: 37131076 | DOI: 10.1038/s41380-023-02085-0
While persistence of fear memories is essential for survival, a failure to inhibit fear in response to harmless stimuli is a feature of anxiety disorders. Extinction training only temporarily suppresses fear memory recovery in adults, but it is highly effective in juvenile rodents. Maturation of GABAergic circuits, in particular of parvalbumin-positive (PV+) cells, restricts plasticity in the adult brain, thus reducing PV+ cell maturation could promote the suppression of fear memories following extinction training in adults. Epigenetic modifications such as histone acetylation control gene accessibility for transcription and help couple synaptic activity to changes in gene expression. Histone deacetylase 2 (Hdac2), in particular, restrains both structural and functional synaptic plasticity. However, whether and how Hdac2 controls the maturation of postnatal PV+ cells is not well understood. Here, we show that PV+- cell specific Hdac2 deletion limits spontaneous fear memory recovery in adult mice, while enhancing PV+ cell bouton remodeling and reducing perineuronal net aggregation around PV+ cells in prefrontal cortex and basolateral amygdala. Prefrontal cortex PV+ cells lacking Hdac2, show reduced expression of Acan, a critical perineuronal net component, which is rescued by Hdac2 re-expression. Pharmacological inhibition of Hdac2 before extinction training is sufficient to reduce both spontaneous fear memory recovery and Acan expression in wild-type adult mice, while these effects are occluded in PV+-cell specific Hdac2 conditional knockout mice. Finally, a brief knock-down of Acan expression mediated by intravenous siRNA delivery before extinction training but after fear memory acquisition is sufficient to reduce spontaneous fear recovery in wild-type mice. Altogether, these data suggest that controlled manipulation of PV+ cells by targeting Hdac2 activity, or the expression of its downstream effector Acan, promotes the long-term efficacy of extinction training in adults.