Zhu, Y;Hart, GW;
PMID: 36626902 | DOI: 10.1016/j.cell.2022.12.016
O-GlcNAc is a dynamic post-translational modification (PTM) that regulates protein functions. In studying the regulatory roles of O-GlcNAc, a major roadblock is the inability to change O-GlcNAcylation on a single protein at a time. Herein, we developed a dual RNA-aptamer-based approach that simultaneously targeted O-GlcNAc transferase (OGT) and β-catenin, the key transcription factor of the Wnt signaling pathway, to selectively increase O-GlcNAcylation of the latter without affecting other OGT substrates. Using the OGT/β-catenin dual-specificity aptamers, we found that O-GlcNAcylation of β-catenin stabilizes the protein by inhibiting its interaction with β-TrCP. O-GlcNAc also increases β-catenin's interaction with EZH2, recruits EZH2 to promoters, and dramatically alters the transcriptome. Further, by coupling riboswitches or an inducible expression system to aptamers, we enabled inducible regulation of protein-specific O-GlcNAcylation. Together, our findings demonstrate the efficacy and versatility of dual-specificity aptamers for regulating O-GlcNAcylation on individual proteins.
Healy, LM;Zia, S;Plemel, JR;
PMID: 36266565 | DOI: 10.1038/s42003-022-04081-6
High dimensional single-cell analysis such as single cell and single nucleus RNA sequencing (sc/snRNAseq) are currently being widely applied to explore microglia diversity. The use of sc/snRNAseq provides a powerful and unbiased approach to deconvolve heterogeneous cellular populations. However, sc/snRNAseq and analyses pipelines are designed to find heterogeneity. Indeed, cellular heterogeneity is often the most frequently reported finding. In this Perspective, we consider the ubiquitous concept of heterogeneity focusing on its application to microglia research and its influence on the field of neuroimmunology. We suggest that a clear understanding of the semantic and biological implications of microglia heterogeneity is essential for mitigating confusion among researchers.
Bravo-Ferrer, I;Khakh, BS;Díaz-Castro, B;
PMID: 35620074 | DOI: 10.1016/j.xpro.2022.101397
Cell-specific RNA sequencing has revolutionized the study of cell biology. Here, we present a protocol to assess cell-specific translatomes of genetically targeted cell types. We focus on astrocytes and describe RNA purification using RiboTag tools. Unlike single-cell RNA sequencing, this approach allows high sequencing depth to detect low expression genes, and the exploration of RNAs translated in subcellular compartments. Furthermore, it avoids underestimation of transcripts from cells susceptible to cell isolation procedures. The protocol can be applied to a variety of cell types. For complete details on the use and execution of this protocol, please refer to Chai et al. (2017), Díaz-Castro et al. (2021), Díaz-Castro et al. (2019), Srinivasan et al. (2016), and Yu et al. (2018).
Erofeeva, T;Grigorenko, A;Gusev, F;Kosevich, I;Rogaev, E;
| DOI: 10.1134/S0006297922030075
A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest. A new stage of development of molecular genetic methods, including methods for high-throughput genome, transcriptome, and epigenome sequencing, both at the level of the whole organism and at the level of individual cells, makes it possible to obtain a detailed picture of the development of these animals. This review examines some modern approaches and advances in the reconstruction of the processes of ontogenesis of cnidarians by studying the regulatory signal transduction pathways and their interactions.
GABA-receptive microglia selectively sculpt developing inhibitory circuits
Favuzzi, E;Huang, S;Saldi, GA;Binan, L;Ibrahim, LA;Fernández-Otero, M;Cao, Y;Zeine, A;Sefah, A;Zheng, K;Xu, Q;Khlestova, E;Farhi, SL;Bonneau, R;Datta, SR;Stevens, B;Fishell, G;
PMID: 34233165 | DOI: 10.1016/j.cell.2021.06.018
Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapses during a critical window of mouse postnatal development. GABA initiates a transcriptional synapse remodeling program within these specialized microglia, which in turn sculpt inhibitory connectivity without impacting excitatory synapses. Ablation of GABAB receptors within microglia impairs this process and leads to behavioral abnormalities. These findings demonstrate that brain wiring relies on the selective communication between matched neuronal and glial cell types.
Embryo-scale, single-cell spatial transcriptomics
Srivatsan, SR;Regier, MC;Barkan, E;Franks, JM;Packer, JS;Grosjean, P;Duran, M;Saxton, S;Ladd, JJ;Spielmann, M;Lois, C;Lampe, PD;Shendure, J;Stevens, KR;Trapnell, C;
PMID: 34210887 | DOI: 10.1126/science.abb9536
Spatial patterns of gene expression manifest at scales ranging from local (e.g., cell-cell interactions) to global (e.g., body axis patterning). However, current spatial transcriptomics methods either average local contexts or are restricted to limited fields of view. Here, we introduce sci-Space, which retains single-cell resolution while resolving spatial heterogeneity at larger scales. Applying sci-Space to developing mouse embryos, we captured approximate spatial coordinates and whole transcriptomes of about 120,000 nuclei. We identify thousands of genes exhibiting anatomically patterned expression, leverage spatial information to annotate cellular subtypes, show that cell types vary substantially in their extent of spatial patterning, and reveal correlations between pseudotime and the migratory patterns of differentiating neurons. Looking forward, we anticipate that sci-Space will facilitate the construction of spatially resolved single-cell atlases of mammalian development.
A constant pool of Lgr5+ intestinal stem cells is required for intestinal homeostasis
Tan, SH;Phuah, P;Tan, LT;Yada, S;Goh, J;Tomaz, LB;Chua, M;Wong, E;Lee, B;Barker, N;
PMID: 33503423 | DOI: 10.1016/j.celrep.2020.108633
Lgr5+ crypt base columnar cells, the operational intestinal stem cells (ISCs), are thought to be dispensable for small intestinal (SI) homeostasis. Using a Lgr5-2A-DTR (diphtheria toxin receptor) model, which ablates Lgr5+ cells with near-complete efficiency and retains endogenous levels of Lgr5 expression, we show that persistent depletion of Lgr5+ ISCs in fact compromises SI epithelial integrity and reduces epithelial turnover in vivo. In vitro, Lgr5-2A-DTR SI organoids are unable to establish or survive when Lgr5+ ISCs are continuously eliminated by adding DT to the media. However, transient exposure to DT at the start of culture allows organoids to form, and the rate of outgrowth reduces with the increasing length of DT presence. Our results indicate that intestinal homeostasis requires a constant pool of Lgr5+ ISCs, which is supplied by rapidly reprogrammed non-Lgr5+ crypt populations when preexisting Lgr5+ ISCs are ablated.
Wallace ML, Saunders A, Huang KW, Philson AC, Goldman M, Macosko EZ, McCarroll SA, Sabatini BL.
PMID: 28384468 | DOI: 10.1016/j.neuron.2017.03.017
The basal ganglia (BG) integrate inputs from diverse sensorimotor, limbic, and associative regions to guide action-selection and goal-directed behaviors. The entopeduncular nucleus (EP) is a major BG output nucleus and has been suggested to channel signals from distinct BG nuclei to target regions involved in diverse functions. Here we use single-cell transcriptional and molecular analyses to demonstrate that the EP contains at least three classes of projection neurons-glutamate/GABA co-releasing somatostatin neurons, glutamatergic parvalbumin neurons, and GABAergic parvalbumin neurons. These classes comprise functionally and anatomically distinct output pathways that differentially affect EP target regions, such as the lateral habenula (LHb) and thalamus. Furthermore, LHb- and thalamic-projecting EP neurons are differentially innervated by subclasses of striatal and pallidal neurons. Therefore, we identify previously unknown subdivisions within the EP and reveal the existence of cascading, molecularly distinct projections through striatum and globus pallidus to EP targets within epithalamus and thalamus.
Clinical cancer research : an official journal of the American Association for Cancer Research
Frank, ML;Lu, K;Erdogan, C;Han, Y;Hu, J;Wang, T;Heymach, JV;Zhang, J;Reuben, A;
PMID: 36413126 | DOI: 10.1158/1078-0432.CCR-22-2469
T cells are integral components of the adaptive immune system, and their responses are mediated by unique T-cell receptors (TCR) that recognize specific antigens from a variety of biological contexts. As a result, analyzing the T-cell repertoire offers a better understanding of immune responses and of diseases like cancer. Next-generation sequencing technologies have greatly enabled the high-throughput analysis of the TCR repertoire. On the basis of our extensive experience in the field from the past decade, we provide an overview of TCR sequencing, from the initial library preparation steps to sequencing and analysis methods and finally to functional validation techniques. With regards to data analysis, we detail important TCR repertoire metrics and present several computational tools for predicting antigen specificity. Finally, we highlight important applications of TCR sequencing and repertoire analysis to understanding tumor biology and developing cancer immunotherapies.
Qiu, H;Miraucourt, LS;Petitjean, H;Theriault, C;
Spinal cord dorsal horn (DH) inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain is poorly understood. Here, we show that the calcium (Ca2+)-binding protein, parvalbumin (PV), controls the activity of inhibitory PV-expressing neurons (PVNs) by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient to the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of firing pattern is due to the recruitment of calcium-activated potassium (SK) channels and blocking them during chronic pain restores normal tonic firing. Our findings indicate that PV is essential to the firing activity of PVNs and in preventing allodynia, these observations may lead to novel strategies for chronic pain relief.
Bi, R;Yin, Q;Li, H;Yang, X;Wang, Y;Li, Q;Fang, H;Li, P;Lyu, P;Fan, Y;Ying, B;Zhu, S;
PMID: 36788226 | DOI: 10.1038/s41467-023-36406-2
The biological characteristics of the temporomandibular joint disc involve complex cellular network in cell identity and extracellular matrix composition to modulate jaw function. The lack of a detailed characterization of the network severely limits the development of targeted therapies for temporomandibular joint-related diseases. Here we profiled single-cell transcriptomes of disc cells from mice at different postnatal stages, finding that the fibroblast population could be divided into chondrogenic and non-chondrogenic clusters. We also find that the resident mural cell population is the source of disc progenitors, characterized by ubiquitously active expression of the NOTCH3 and THY1 pathways. Lineage tracing reveals that Myh11+ mural cells coordinate angiogenesis during disc injury but lost their progenitor characteristics and ultimately become Sfrp2+ non-chondrogenic fibroblasts instead of Chad+ chondrogenic fibroblasts. Overall, we reveal multiple insights into the coordinated development of disc cells and are the first to describe the resident mural cell progenitor during disc injury.
Kim, JE;Li, B;Fei, L;Horne, R;Lee, D;Loe, AK;Miyake, H;Ayar, E;Kim, DK;Surette, MG;Philpott, DJ;Sherman, P;Guo, G;Pierro, A;Kim, TH;
PMID: 36473468 | DOI: 10.1016/j.immuni.2022.11.003
Intestinal stem cell maturation and development coincide with gut microbiota exposure after birth. Here, we investigated how early life microbial exposure, and disruption of this process, impacts the intestinal stem cell niche and development. Single-cell transcriptional analysis revealed impaired stem cell differentiation into Paneth cells and macrophage specification upon antibiotic treatment in early life. Mouse genetic and organoid co-culture experiments demonstrated that a CD206+ subset of intestinal macrophages secreted Wnt ligands, which maintained the mesenchymal niche cells important for Paneth cell differentiation. Antibiotics and reduced numbers of Paneth cells are associated with the deadly infant disease, necrotizing enterocolitis (NEC). We showed that colonization with Lactobacillus or transfer of CD206+ macrophages promoted Paneth cell differentiation and reduced NEC severity. Together, our work defines the gut microbiota-mediated regulation of stem cell niches during early postnatal development.