FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Schaaf, CR;Polkoff, KM;Carter, A;Stewart, AS;Sheahan, B;Freund, J;Ginzel, J;Snyder, JC;Roper, J;Piedrahita, JA;Gonzalez, LM;
PMID: 37159340 | DOI: 10.1096/fj.202300223R
Intestinal epithelial stem cells (ISCs) are responsible for intestinal epithelial barrier renewal; thereby, ISCs play a critical role in intestinal pathophysiology research. While transgenic ISC reporter mice are available, advanced translational studies lack a large animal model. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer (CRC) model. We applied histology, immunofluorescence, fluorescence-activated cell sorting, flow cytometry, gene expression quantification, and 3D organoid cultures to whole tissue and single cells from the duodenum, jejunum, ileum, and colon of LGR5-H2B-GFP and wild-type pigs. Ileum and colon LGR5-H2B-GFP, healthy human, and murine biopsies were compared by mRNA fluorescent in situ hybridization (FISH). To model CRC, adenomatous polyposis coli (APC) mutation was induced by CRISPR/Cas9 editing in porcine LGR5-H2B-GFP colonoids. Crypt-base, green fluorescent protein (GFP) expressing cells co-localized with ISC biomarkers. LGR5-H2B-GFPhi cells had significantly higher LGR5 expression (p < .01) and enteroid forming efficiency (p < .0001) compared with LGR5-H2B-GFPmed/lo/neg cells. Using FISH, similar LGR5, OLFM4, HOPX, LYZ, and SOX9 expression was identified between human and LGR5-H2B-GFP pig crypt-base cells. LGR5-H2B-GFP/APCnull colonoids had cystic growth in WNT/R-spondin-depleted media and significantly upregulated WNT/β-catenin target gene expression (p < .05). LGR5+ ISCs are reproducibly isolated in LGR5-H2B-GFP pigs and used to model CRC in an organoid platform. The known anatomical and physiologic similarities between pig and human, and those shown by crypt-base FISH, underscore the significance of this novel LGR5-H2B-GFP pig to translational ISC research.
Ogawa H, Koyanagi-Aoi M, Otani K, Zen Y, Maniwa Y, Aoi T.
PMID: 28951614 | DOI: 10.1038/s41598-017-12017-y
In the present study, we successfully generated lung cancer stem cell (CSC)-like cells by introducing a small set of transcription factors into a lung cancer cell line. In addition to properties that are conventionally referred to as CSC properties, the lung induced CSCs exhibited the ability to form lung cancer-like tissues in vitro with vascular cells and mesenchymal stem cells, which showed structures and immunohistological patterns that were similar to human lung cancer tissues. We named them "lung cancer organoids". We found that interleukin-6 (IL-6), which was expressed in the lung induced CSCs, facilitates the formation of lung cancer organoids via the conversion of mesenchymal stem cells into alpha-smooth muscle actin (αSMA)-positive cells. Interestingly, the combination of anti-IL-6 antibody and cisplatin could destroy the lung cancer organoids, while cisplatin alone could not. Furthermore, IL-6 mRNA-positive cancer cells were found in clinical lung cancer samples. These results suggest that IL-6 could be a novel therapeutic target in lung cancer.
Ogrodnik M, Zhu Y, Langhi LGP, Tchkonia T, Krüger P, Fielder E, Victorelli S, Ruswhandi RA, Giorgadze N, Pirtskhalava T, Podgorni O, Enikolopov G, Johnson KO, Xu M, Inman C, Schafer M, Weigl M, Ikeno Y, Burns TC, Passos JF, von Zglinicki T, Kirkland JL, Jurk D.
PMID: 30612898 | DOI: 10.1016/j.cmet.2018.12.008
Cellular senescence entails a stable cell-cycle arrest and a pro-inflammatory secretory phenotype, which contributes to aging and age-related diseases. Obesity is associated with increased senescent cell burden and neuropsychiatric disorders, including anxiety and depression. To investigate the role of senescence in obesity-related neuropsychiatric dysfunction, we used the INK-ATTAC mouse model, from which p16Ink4a-expressing senescent cells can be eliminated, and senolytic drugs dasatinib and quercetin. We found that obesity results in the accumulation of senescent glial cells in proximity to the lateral ventricle, a region in which adult neurogenesis occurs. Furthermore, senescent glial cells exhibit excessive fat deposits, a phenotype we termed “accumulation of lipids in senescence.” Clearing senescent cells from high fat-fed or leptin receptor-deficient obese mice restored neurogenesis and alleviated anxiety-related behavior. Our study provides proof-of-concept evidence that senescent cells are major contributors to obesity-induced anxiety and that senolytics are a potential new therapeutic avenue for treating neuropsychiatric disorders.
Ioannou, M;Hoving, D;Aramburu, IV;Temkin, MI;De Vasconcelos, NM;Tsourouktsoglou, TD;Wang, Q;Boeing, S;Goldstone, R;Vernardis, S;Demichev, V;Ralser, M;David, S;Stahl, K;Bode, C;Papayannopoulos, V;
PMID: 35945238 | DOI: 10.1038/s41467-022-32320-1
The mechanisms linking systemic infection to hyperinflammation and immune dysfunction in sepsis are poorly understood. Extracellular histones promote sepsis pathology, but their source and mechanism of action remain unclear. Here, we show that by controlling fungi and bacteria captured by splenic macrophages, neutrophil-derived myeloperoxidase attenuates sepsis by suppressing histone release. In systemic candidiasis, microbial capture via the phagocytic receptor SIGNR1 neutralizes myeloperoxidase by facilitating marginal zone infiltration and T cell death-dependent histone release. Histones and hyphae induce cytokines in adjacent CD169 macrophages including G-CSF that selectively depletes mature Ly6Ghigh neutrophils by shortening their lifespan in favour of immature Ly6Glow neutrophils with a defective oxidative burst. In sepsis patient plasma, these mediators shorten mature neutrophil lifespan and correlate with neutrophil mortality markers. Consequently, high G-CSF levels and neutrophil lifespan shortening activity are associated with sepsis patient mortality. Hence, by exploiting phagocytic receptors, pathogens degrade innate and adaptive immunity through the detrimental impact of downstream effectors on neutrophil lifespan.
Clinical and translational medicine
Jiang, H;Yu, D;Yang, P;Guo, R;Kong, M;Gao, Y;Yu, X;Lu, X;Fan, X;
PMID: 35184420 | DOI: 10.1002/ctm2.730
Deciphering intra- and inter-tumoural heterogeneity is essential for understanding the biology of gastric cancer (GC) and its metastasis and identifying effective therapeutic targets. However, the characteristics of different organ-tropism metastases of GC are largely unknown.Ten fresh human tissue samples from six patients, including primary tumour and adjacent non-tumoural samples and six metastases from different organs or tissues (liver, peritoneum, ovary, lymph node) were evaluated using single-cell RNA sequencing. Validation experiments were performed using histological assays and bulk transcriptomic datasets.Malignant epithelial subclusters associated with invasion features, intraperitoneal metastasis propensity, epithelial-mesenchymal transition-induced tumour stem cell phenotypes, or dormancy-like characteristics were discovered. High expression of the first three subcluster-associated genes displayed worse overall survival than those with low expression in a GC cohort containing 407 samples. Immune and stromal cells exhibited cellular heterogeneity and created a pro-tumoural and immunosuppressive microenvironment. Furthermore, a 20-gene signature of lymph node-derived exhausted CD8+ T cells was acquired to forecast lymph node metastasis and validated in GC cohorts. Additionally, although anti-NKG2A (KLRC1) antibody have not been used to treat GC patients even in clinical trials, we uncovered not only malignant tumour cells but one endothelial subcluster, mucosal-associated invariant T cells, T cell-like B cells, plasmacytoid dendritic cells, macrophages, monocytes, and neutrophils may contribute to HLA-E-KLRC1/KLRC2 interaction with cytotoxic/exhausted CD8+ T cells and/or natural killer (NK) cells, suggesting novel clinical therapeutic opportunities in GC. Additionally, our findings suggested that PD-1 expression in CD8+ T cells might predict clinical responses to PD-1 blockade therapy in GC.This study provided insights into heterogeneous microenvironment of GC primary tumours and organ-specific metastases and provide support for precise diagnosis and treatment.
Mishra D, Richard JE, Maric I, Porteiro B, Häring M, Kooijman S, Musovic S, Eerola K, López-Ferreras L, Peris E, Grycel K, Shevchouk OT, Micallef P, Olofsson CS, Wernstedt Asterholm I, Grill HJ, Nogueiras R, Skibicka KP.
PMID: 30865890 | DOI: 10.1016/j.celrep.2019.02.044
Chronic low-grade inflammation and increased serum levels of the cytokine IL-6 accompany obesity. For brain-produced IL-6, the mechanisms by which it controls energy balance and its role in obesity remain unclear. Here, we show that brain-produced IL-6 is decreased in obese mice and rats in a neuroanatomically and sex-specific manner. Reduced IL-6 mRNA localized to lateral parabrachial nucleus (lPBN) astrocytes, microglia, and neurons, including paraventricular hypothalamus-innervating lPBN neurons. IL-6 microinjection into lPBN reduced food intake and increased brown adipose tissue (BAT) thermogenesis in male lean and obese rats by increasing thyroid and sympathetic outflow to BAT. Parabrachial IL-6 interacted with leptin to reduce feeding. siRNA-mediated reduction of lPBN IL-6 leads to increased weight gain and adiposity, reduced BAT thermogenesis, and increased food intake. Ambient cold exposure partly normalizes the obesity-induced suppression of lPBN IL-6. These results indicate that lPBN-produced IL-6 regulates feeding and metabolism and pinpoints (patho)physiological contexts interacting with lPBN IL-6.
Gao, J;Zhao, X;Hu, S;Huang, Z;Hu, M;Jin, S;Lu, B;Sun, K;Wang, Z;Fu, J;Weersma, RK;He, X;Zhou, H;
PMID: 36049483 | DOI: 10.1016/j.chom.2022.08.002
The pattern-recognition receptor NOD2 senses bacterial muropeptides to regulate host immunity and maintain homeostasis. Loss-of-function mutations in NOD2 are associated with Crohn's disease (CD), but how the variations in microbial factors influence NOD2 signaling and host pathology is elusive. We demonstrate that the Firmicutes peptidoglycan remodeling enzyme, DL-endopeptidase, increased the NOD2 ligand level in the gut and impacted colitis outcomes. Metagenomic analyses of global cohorts (n = 857) revealed that DL-endopeptidase gene abundance decreased globally in CD patients and negatively correlated with colitis. Fecal microbiota from CD patients with low DL-endopeptidase activity predisposed mice to colitis. Administering DL-endopeptidase, but not an active site mutant, alleviated colitis via the NOD2 pathway. Therapeutically restoring NOD2 ligands with a DL-endopeptidase-producing Lactobacillus salivarius strain or mifamurtide, a clinical analog of muramyl dipeptide, exerted potent anti-colitis effects. Our study suggests that the depletion of DL-endopeptidase contributes to CD pathogenesis through NOD2 signaling, providing a therapeutically modifiable target.
Inhibition of the cGAS-STING pathway ameliorates the premature senescence hallmarks of Ataxia-Telangiectasia brain organoids
Aguado, J;Chaggar, HK;Gómez-Inclán, C;Shaker, MR;Leeson, HC;Mackay-Sim, A;Wolvetang, EJ;
PMID: 34459078 | DOI: 10.1111/acel.13468
Ataxia-telangiectasia (A-T) is a genetic disorder caused by the lack of functional ATM kinase. A-T is characterized by chronic inflammation, neurodegeneration and premature ageing features that are associated with increased genome instability, nuclear shape alterations, micronuclei accumulation, neuronal defects and premature entry into cellular senescence. The causal relationship between the detrimental inflammatory signature and the neurological deficiencies of A-T remains elusive. Here, we utilize human pluripotent stem cell-derived cortical brain organoids to study A-T neuropathology. Mechanistically, we show that the cGAS-STING pathway is required for the recognition of micronuclei and induction of a senescence-associated secretory phenotype (SASP) in A-T olfactory neurosphere-derived cells and brain organoids. We further demonstrate that cGAS and STING inhibition effectively suppresses self-DNA-triggered SASP expression in A-T brain organoids, inhibits astrocyte senescence and neurodegeneration, and ameliorates A-T brain organoid neuropathology. Our study thus reveals that increased cGAS and STING activity is an important contributor to chronic inflammation and premature senescence in the central nervous system of A-T and constitutes a novel therapeutic target for treating neuropathology in A-T patients.
O'Toole, A;Mohamed, F;Zhang, J;Brown, C;
| DOI: 10.2139/ssrn.4199232
To detail early tissue distribution and innate immune response to rabbit hemorrhagic disease virus 2 (RHDV2), 13 rabbits were orally ( Oryctolagus cuniculus ) inoculated with liver homogenate made from a feral rabbit that succumbed to RHDV2 during the 2020 outbreak in Oregon, USA. Rabbits were monitored regularly, with euthanasia and collection of tissues and swabs, at 12, 24, 36, 48, 96, and 144 hours post inoculation. Livers from these rabbits were positive by RT-rtPCR for presence of the virus. Using RNAscope for viral and replicative intermediates, rabbits had detectable viral genomic RNA at each time point, initially within the gastrointestinal tract, then in the liver by 36 hours post inoculation. Also using RNAscope, there were increasing amounts of mRNA coding for TNF-α, IL-6, and IL-1β within the liver and spleen through 48 hours post inoculation. The results of this study aided our understanding of the local innate immune response to RHDV2, as well as aspects of pathogenesis.
Gajewski, T;Rouhani, S;Trujillo, J;Pyzer, A;Yu, J;Fessler, J;Cabanov, A;Higgs, E;Cron, K;Zha, Y;Lu, Y;Bloodworth, J;Abasiyanik, M;Okrah, S;Flood, B;Hatogai, K;Leung, M;Pezeshk, A;Kozloff, L;Reschke, R;Strohbehn, G;Chervin, CS;Kumar, M;Schrantz, S;Madariaga, ML;Beavis, K;Yeo, KT;Sweis, R;Segal, J;Tay, S;Izumchenko, E;Mueller, J;Chen, L;
PMID: 34845442 | DOI: 10.21203/rs.3.rs-1083825/v1
The mechanisms explaining progression to severe COVID-19 remain poorly understood. It has been proposed that immune system dysregulation/over-stimulation may be implicated, but it is not clear how such processes would lead to respiratory failure. We performed comprehensive multiparameter immune monitoring in a tightly controlled cohort of 128 COVID-19 patients, and used the ratio of oxygen saturation to fraction of inspired oxygen (SpO2 / FiO2) as a physiologic measure of disease severity. Machine learning algorithms integrating 139 parameters identified IL-6 and CCL2 as two factors predictive of severe disease, consistent with the therapeutic benefit observed with anti-IL6-R antibody treatment. However, transcripts encoding these cytokines were not detected among circulating immune cells. Rather, in situ analysis of lung specimens using RNAscope and immunofluorescent staining revealed that elevated IL-6 and CCL2 were dominantly produced by infected lung type II pneumocytes. Severe disease was not associated with higher viral load, deficient antibody responses, or dysfunctional T cell responses. These results refine our understanding of severe COVID-19 pathophysiology, indicating that aberrant cytokine production by infected lung epithelial cells is a major driver of immunopathology. We propose that these factors cause local immune regulation towards the benefit of the virus.
Kato, T;Radicioni, G;Papanikolas, MJ;Stoychev, GV;Markovetz, MR;Aoki, K;Porterfield, M;Okuda, K;Barbosa Cardenas, SM;Gilmore, RC;Morrison, CB;Ehre, C;Burns, KA;White, KK;Brennan, TA;Goodell, HP;Thacker, H;Loznev, HT;Forsberg, LJ;Nagase, T;Rubinstein, M;Randell, SH;Tiemeyer, M;Hill, DB;Kesimer, M;O'Neal, WK;Ballard, ST;Freeman, R;Button, B;Boucher, RC;
PMID: 35363522 | DOI: 10.1126/sciadv.abm9718
Cystic fibrosis (CF) is characterized by abnormal transepithelial ion transport. However, a description of CF lung disease pathophysiology unifying superficial epithelial and submucosal gland (SMG) dysfunctions has remained elusive. We hypothesized that biophysical abnormalities associated with CF mucus hyperconcentration provide a unifying mechanism. Studies of the anion secretion-inhibited pig airway model of CF revealed elevated SMG mucus concentrations, osmotic pressures, and SMG mucus accumulation. Human airway studies revealed hyperconcentrated CF SMG mucus with raised osmotic pressures and cohesive forces predicted to limit SMG mucus secretion/release. Using proline-rich protein 4 (PRR4) as a biomarker of SMG secretion, CF sputum proteomics analyses revealed markedly lower PRR4 levels compared to healthy and bronchiectasis controls, consistent with a failure of CF SMGs to secrete mucus onto airway surfaces. Raised mucus osmotic/cohesive forces, reflecting mucus hyperconcentration, provide a unifying mechanism that describes disease-initiating mucus accumulation on airway surfaces and in SMGs of the CF lung.
Schaller, T;Märkl, B;Claus, R;Sholl, L;Hornick, JL;Giannetti, MP;Schweizer, L;Mann, M;Castells, M;
PMID: 35340030 | DOI: 10.1111/all.15293