ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Human Pathology
2016 Apr 08
Gupta M, Babic A, Beck AH, Terry K.
PMID: - | DOI: 10.1016/j.humpath.2016.03.006
Inflammatory cytokines, like tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), are elevated in ovarian cancer. Differences in cytokine expression by histologic subytpe or ovarian cancer risk factors can provide useful insight into ovarian cancer risk and etiology. We used ribonucleic acid (RNA) in-situ hybridization to assess TNF-α and IL-6 expression on tissue microarray slides from 78 epithelial ovarian carcinomas (51 serous, 12 endometrioid, 7 clear cell, 2 mucinous, 6 other) from a population-based case control study. Cytokine expression was scored semi-quantitatively and odds ratios (OR) and 95% confidence intervals (CI) were calculated using polytomous logistic regression. TNF-α was expressed in 46% of the tumors while sparse IL-6 expression was seen only 18% of the tumors. For both markers, expression was most common in high grade serous carcinomas followed by endometrioid carcinomas. Parity was associated with a reduced risk of TNF-α positive (OR = 0.3, 95% CI: 0.1-0.7 for 3 or more children versus none) but not TNF-α negative tumors (p-heterogeneity = 0.02). In contrast, current smoking was associated with a nearly three fold increase in risk of TNF-α negative (OR = 2.8, 95% CI: 1.2, 6.6) but not TNF-α positive tumors (p-heterogeneity = 0.06). Our data suggests that TNF-α expression in ovarian carcinoma varies by histologic subtype and provides some support for the role of inflammation in ovarian carcinogenesis. The novel associations detected in our study need to be validated in a larger cohort of patients in future studies.
Frontiers in Neural Circuits
2021 May 19
Eskenazi, D;Malave, L;Mingote, S;Yetnikoff, L;Ztaou, S;Velicu, V;Rayport, S;Chuhma, N;
| DOI: 10.3389/fncir.2021.665386
eNeuro
2017 Mar 17
Samineni VK, Grajales-Reyes JG, Copits BA, O’Brien DE, Trigg SL, Gomez AM, Bruchas MR, Gereau RW.
PMID: - | DOI: 10.1523/ENEURO.0129-16.2017
The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pro-nociceptive effects on pain transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the PAG has prevented direct testing of this hypothesis. Here we demonstrate the different contributions of genetically-defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysiological studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception.
Significance Statement The PAG is a midbrain region critical for the modulation of pain. However, the roles played by the distinct cell types within the PAG in nociceptive processing are poorly understood. This work addresses the divergent roles of glutamatergic and GABAergic PAG neuronal subpopulations in nociceptive processing. We demonstrate that activation of glutamatergic neurons or inhibition of GABAergic neurons suppresses nociception. Whereas inhibition of glutamatergic neuronal activity or activation of GABAergic neuronal activity potentiates nociception. This report identifies distinct roles for these neuronal populations in modulating nociceptive processing.
Histopathology.
2018 Apr 19
Sawada R, Ku Y, Akita M, Otani K, Fujikura K, Itoh T, Ajiki T, Fukumoto T, Kakeji Y, Zen Y.
PMID: 29675965 | DOI: 10.1111/his.13633
Abstract
BACKGROUND & AIMS:
The present study aimed to elucidate the clinicopathological significance of IL-6 and IL-33 expression in intrahepatic cholangiocarcinomas (iCCAs) and perihilar cholangiocarcinomas (pCCAs).
METHODS:
IL-6 and IL-33 mRNA expression was examined in iCCAs (n=55) and pCCAs (n=32) using quantitative real-time PCR and a highly sensitive in situ hybridization protocol (RNAscope™ ), and expression values were correlated with clinicopathological features. According to a recently proposed classification scheme, iCCAs were separated into small- (n=33) and large-duct types (n=22).
RESULTS:
IL-6 and IL-33 expression levels were higher in large-duct iCCAs and pCCAs than in small-duct iCCAs, with a positive correlation between the values of these cytokines. In double in situ hybridization/immunostaining, IL-6 mRNA was expressed in actin-positive (myo)fibroblasts, while IL-33 was mainly produced by CD31-positive endothelial cells. Based on the average expression value as a cut-off point, cases were classified as IL-6high and IL-6low or IL-33high and IL-33low . In the combined cohort of large-duct iCCAs and pCCAs, IL-6high and IL-6low cholangiocarcinomas shared many features, while IL-33high cases had less aggressive characteristics than IL-33low cases as evidenced by lower tumour marker concentrations, smaller tumour sizes, less common vascular invasion, lower pT stages, and higher lymphocyte-to-monocyte ratios in blood. KRAS mutations were slightly less common in IL-33high cases than in IL-33low cancers (9% vs 29%; p=0.061). The strong expression of IL-33 in tissue appeared to be an independent favourable prognostic factor.
CONCLUSIONS:
IL-33high cholangiocarcinomas may represent a unique, less aggressive carcinogenetic process of the large bile ducts.
Psychoneuroendocrinology
2021 Sep 01
López-Ferreras, L;Longo, F;Richard, J;Eerola, K;Shevchouk, O;Tuzinovic, M;Skibicka, K;
| DOI: 10.1016/j.psyneuen.2021.105284
Sci Transl Med.
2016 Apr 13
Balko JM, Schwarz LJ, Luo N, Estrada MV, Giltnane JM, Dávila-González D, Wang K, Sánchez V, Dean PT, Combs SE, Hicks D, Pinto JA, Landis MD, Doimi FD, Yelensky R, Miller VA, Stephens PJ, Rimm DL, Gómez H, Chang JC, Sanders ME, Cook RS, Arteaga CL.
PMID: 27075627 | DOI: 10.1126/scitranslmed.aad3001
Amplifications at 9p24 have been identified in breast cancer and other malignancies, but the genes within this locus causally associated with oncogenicity or tumor progression remain unclear. Targeted next-generation sequencing of postchemotherapy triple-negative breast cancers (TNBCs) identified a group of 9p24-amplified tumors, which contained focal amplification of the Janus kinase 2 (JAK2) gene. These patients had markedly inferior recurrence-free and overall survival compared to patients with TNBC withoutJAK2amplification. Detection ofJAK2/9p24 amplifications was more common in chemotherapy-treated TNBCs than in untreated TNBCs or basal-like cancers, or in other breast cancer subtypes. Similar rates ofJAK2amplification were confirmed in patient-derived TNBC xenografts. In patients for whom longitudinal specimens were available,JAK2amplification was selected for during neoadjuvant chemotherapy and eventual metastatic spread, suggesting a role in tumorigenicity and chemoresistance, phenotypes often attributed to a cancer stem cell-like cell population. In TNBC cell lines withJAK2copy gains or amplification, specific inhibition of JAK2 signaling reduced mammosphere formation and cooperated with chemotherapy in reducing tumor growth in vivo. In these cells, inhibition of JAK1-signal transducer and activator of transcription 3 (STAT3) signaling had little effect or, in some cases, counteracted JAK2-specific inhibition. Collectively, these results suggest that JAK2-specific inhibitors are more efficacious than dual JAK1/2 inhibitors against JAK2-amplified TNBCs. Furthermore,JAK2amplification is a potential biomarker for JAK2 dependence, which, in turn, can be used to select patients for clinical trials with JAK2 inhibitors.
Neuroendocrinology
2019 Mar 20
Anesten F, Mishra D, Dalmau Gasull A, Engstrom-Ruud L, Bellman J, Palsdottir V, Zhang FP, Trapp S, Skibicka KP, Poutanen M and Jansson JO
PMID: 30889580 | DOI: 10.1159/000499693
BMC pulmonary medicine
2021 Jul 10
Kinugawa, Y;Uehara, T;Iwaya, M;Asaka, S;Kobayashi, S;Nakajima, T;Komatsu, M;Yasuo, M;Yamamoto, H;Ota, H;
PMID: 34246246 | DOI: 10.1186/s12890-021-01603-6
The Journal of neuroscience : the official journal of the Society for Neuroscience
2022 Apr 19
Ambler, M;Hitrec, T;Wilson, A;Cerri, M;Pickering, A;
PMID: 35440490 | DOI: 10.1523/JNEUROSCI.2102-21.2022
Oncotarget.
2018 Jan 09
Otani K, Inoue D, Fujikura K, Komori T, Abe-Suzuki S, Tajiri T, Itoh T, Zen Y.
PMID: - | DOI: 10.18632/oncotarget.24068
The present study aimed to compare clinicopathologic features between idiopathic multicentric Castleman’s disease (n=22) and IgG4-related disease (n=26). Histology was analyzed using lymph node and lung biopsies. The expression of IL-6 mRNA in tissue was also examined by in situ hybridization and real-time PCR. Patients with idiopathic multicentric Castleman’s disease were significantly younger than those with IgG4-related disease (p<0.001). Splenomegaly was observed in only idiopathic multicentric Castleman’s disease (p=0.002), while pancreatitis and sialo-dacryoadenitis were restricted to IgG4-related disease (both p<0.001). Serum IgG4 concentrations were commonly elevated at >135 mg/dL in both groups (p=0.270). However, the IgG4/IgG ratio in IgG4-related disease was significantly higher than that in Castleman’s disease (p<0.001). Histologically, sheet-like plasmacytosis was highly characteristic of idiopathic multicentric Castleman’s disease (p<0.001), while plasmacytic infiltration in IgG4-related disease was always associated with intervening lymphocytes. Similar to laboratory findings, the IgG4/IgG-positive plasma cell ratio, but not the IgG4-positive cell count, was significantly higher in IgG4-related disease (p=0.002). Amyloid-like hyalinized fibrosis was found in 6/8 lung biopsies (75%) of Castleman’s disease. The over-expression of IL-6 mRNA was not confirmed in tissue samples of Castleman’s disease by either in situhybridization or quantitative real-time PCR. In conclusion, useful data for a differential diagnosis appear to be age, affected organs, the serum IgG4/IgG ratio, sheet-like plasmacytosis in biopsies, and the IgG4/IgG-positive cell ratio on immunostaining. Since IL-6 was not over-expressed in tissue of idiopathic multicentric Castleman’s disease, IL-6 may be produced outside the affected organs, and circulating IL-6 may lead to lymphoplasmacytosis at nodal and extranodal sites.
Ecotoxicology and environmental safety
2023 Jun 29
Ji, R;Cui, M;Zhou, D;Pan, X;Xie, Y;Wu, X;Liang, X;Zhang, H;Song, W;
PMID: 37392660 | DOI: 10.1016/j.ecoenv.2023.115205
Nature neuroscience
2023 May 15
Calafate, S;Özturan, G;Thrupp, N;Vanderlinden, J;Santa-Marinha, L;Morais-Ribeiro, R;Ruggiero, A;Bozic, I;Rusterholz, T;Lorente-Echeverría, B;Dias, M;Chen, WT;Fiers, M;Lu, A;Vlaeminck, I;Creemers, E;Craessaerts, K;Vandenbempt, J;van Boekholdt, L;Poovathingal, S;Davie, K;Thal, DR;Wierda, K;Oliveira, TG;Slutsky, I;Adamantidis, A;De Strooper, B;de Wit, J;
PMID: 37188873 | DOI: 10.1038/s41593-023-01325-4
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com