ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Clinical and translational medicine
2021 Jul 01
Cinar, R;Park, JK;Zawatsky, CN;Coffey, NJ;Bodine, SP;Abdalla, J;Yokoyama, T;Jourdan, T;Jay, L;Zuo, MXG;O'Brien, KJ;Huang, J;Mackie, K;Alimardanov, A;Iyer, MR;Gahl, WA;Kunos, G;Gochuico, BR;Malicdan, MCV;
PMID: 34323400 | DOI: 10.1002/ctm2.471
iScience
2021 May 01
Delaine-Smith, R;Maniati, E;Malacrida, B;Nichols, S;Roozitalab, R;Jones, R;Lecker, L;Pearce, O;Knight, M;Balkwill, F;
| DOI: 10.1016/j.isci.2021.102674
Stem Cell Reports
2018 Apr 05
Storer MA, Gallagher D, Fatt MP, Simonetta JV, Kaplan DR, Miller FD.
PMID: - | DOI: 10.1016/j.stemcr.2018.03.008
Circulating systemic factors can regulate adult neural stem cell (NSC) biology, but the identity of these circulating cues is still being defined. Here, we have focused on the cytokine interleukin-6 (IL-6), since increased circulating levels of IL-6 are associated with neural pathologies such as autism and bipolar disorder. We show that IL-6 promotes proliferation of post-natal murine forebrain NSCs and that, when the IL-6 receptor is inducibly knocked out in post-natal or adult neural precursors, this causes a long-term decrease in forebrain NSCs. Moreover, a transient circulating surge of IL-6 in perinatal or adult mice causes an acute increase in neural precursor proliferation followed by long-term depletion of adult NSC pools. Thus, IL-6 signaling is both necessary and sufficient for adult NSC self-renewal, and acute perturbations in circulating IL-6, as observed in many pathological situations, have long-lasting effects on the size of adult NSC pools.
Development.
2018 Aug 15
Jin Y, Cong Q, Gvozdenovic-Jeremic J, Hu J, Zhang Y, Terkeltaub R, Yang Y.
PMID: 30111653 | DOI: 10.1242/dev.164830
The differentiated phenotype of articular chondrocytes of synovial joints needs to be maintained throughout life. Disruption of the articular cartilage, frequently associated with chondrocyte hypertrophy and calcification, is a central feature in osteoarthritis (OA). However, the molecular mechanisms whereby phenotypes of articular chondrocytes are maintained and pathological calcification is inhibited remain poorly understood. Recently, the ecto-enzyme ENPP1, a suppressor of pathological calcification, was reported to be decreased in joint cartilage with OA in both human and mouse, and Enpp1 deficiency causes joint calcification. Here we found that Hedgehog signaling activation contributes to ectopic joint calcification in the Enpp1-/- mice. In the Enpp1-/- joints, Hedgehog signaling was upregulated. Further activation of Hedgehog signaling by removing Patched 1 in the Enpp1-/- mice enhanced ectopic joint calcification, while removing Gli2 partially rescued the ectopic calcification phenotype. Additionally, reduction of Gαs in the Enpp1-/- mice also enhanced joint calcification, suggesting Enpp1 inhibited Hedgehog signaling and chondrocyte hypertrophy by activating Gαs-PKA signaling. Our findings provide new insights in the mechanisms underlying Enpp1 regulation of joint integrity.
Neuron
2018 Sep 27
Duan L, Zhang XD, Miao WX, Sun YJ, Xiong G, Wu Q, Li G, Yang P, Yu H, Li H, Wang Y, Zhang M, Hu LY, Tong X, Zhou WH, Yu X.
PMID: - | DOI: 10.1016/j.neuron.2018.08.030
Acute infection, if not kept in check, can lead to systemic inflammatory responses in the brain. Here, we show that within 2 hr of systemic inflammation, PDGFRβ mural cells of blood vessels rapidly secrete chemokine CCL2, which in turn increases total neuronal excitabilityby promoting excitatory synaptic transmission in glutamatergic neurons of multiple brain regions. By single-cell RNA sequencing, we identified Col1a1 and Rgs5 subgroups of PDGFRβ cells as the main source of CCL2. Lipopolysaccharide (LPS)- or Poly(I:C)-treated pericyte culture medium induced similar effects in a CCL2-dependent manner. Importantly, in Pdgfrb-Cre;Ccl2fl/fl mice, LPS-induced increase in excitatory synaptic transmission was significantly attenuated. These results demonstrate in vivo that PDGFRβ cells function as initial sensors of external insults by secreting CCL2, which relays the signal to the central nervous system. Through their gateway position in the brain, PDGFRβ cells are ideally positioned to respond rapidly to environmental changes and to coordinate responses.
Cell
2023 Jun 14
Nabhan, AN;Webster, JD;Adams, JJ;Blazer, L;Everrett, C;Eidenschenk, C;Arlantico, A;Fleming, I;Brightbill, HD;Wolters, PJ;Modrusan, Z;Seshagiri, S;Angers, S;Sidhu, SS;Newton, K;Arron, JR;Dixit, VM;
PMID: 37321220 | DOI: 10.1016/j.cell.2023.05.022
Clinics in Dermatology
2021 Jul 01
Magro, C;Nuovo, G;Mulvey, J;Laurence, J;Harp, J;Neil Crowson, A;
| DOI: 10.1016/j.clindermatol.2021.07.001
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
2023 Jun 01
Schaaf, CR;Polkoff, KM;Carter, A;Stewart, AS;Sheahan, B;Freund, J;Ginzel, J;Snyder, JC;Roper, J;Piedrahita, JA;Gonzalez, LM;
PMID: 37159340 | DOI: 10.1096/fj.202300223R
J Cell Sci.
2019 Apr 11
Pirapaharan DC, Olesen JB, Andersen TL, Christensen SB, Kjærsgaard-Andersen P, Delaisse JM, Søe K.
PMID: 30975918 | DOI: 10.1242/jcs.229351
Osteoblast-lineage cells in bone human were recently shown to colonize eroded bone surfaces and to closely interact with osteoclasts. They proved identical with reversal cells and are believed to differentiate into bone forming osteoblasts thereby coupling resorption and formation. However, they also exert catabolic activity that contributes to osteoclastic bone resorption, but this has not received much attention. Herein, we used co-cultures of primary human osteoblast-lineage cells and human osteoclasts derived from peripheral blood monocytes to investigate whether a catabolic activity of osteoblast-lineage cells may impact on osteoclastic bone resorption. Through a combination of immunofluorescence, in-situ hybridization, and time-lapse we show that MMP-13 expressing osteoblast-lineage cells are attracted to and closely interact with bone resorbing osteoclasts. This close interaction results in a strong and significant increase in the bone resorptive activity of osteoclasts - especially those making trenches. Importantly, we show that osteoclastic bone resorption becomes sensitive to inhibition of matrix metalloproteinases in the presence, but not in the absence, of osteoblast-lineage cells. We propose that this may be due to the direct action of osteoblast-lineage-derived MMP-13 on bone resorption.
JCI insight
2022 Dec 15
Sieber, P;Schäfer, A;Lieberherr, R;Caimi, SL;Lüthi, U;Ryge, J;Bergmann, JH;Le Goff, F;Stritt, M;Blattmann, P;Renault, B;Rammelt, P;Sempere, B;Freti, D;Studer, R;White, ES;Birker-Robaczewska, M;Boucher, M;Nayler, O;
PMID: 36520540 | DOI: 10.1172/jci.insight.154719
Sci Rep.
2017 Sep 26
Ogawa H, Koyanagi-Aoi M, Otani K, Zen Y, Maniwa Y, Aoi T.
PMID: 28951614 | DOI: 10.1038/s41598-017-12017-y
In the present study, we successfully generated lung cancer stem cell (CSC)-like cells by introducing a small set of transcription factors into a lung cancer cell line. In addition to properties that are conventionally referred to as CSC properties, the lung induced CSCs exhibited the ability to form lung cancer-like tissues in vitro with vascular cells and mesenchymal stem cells, which showed structures and immunohistological patterns that were similar to human lung cancer tissues. We named them "lung cancer organoids". We found that interleukin-6 (IL-6), which was expressed in the lung induced CSCs, facilitates the formation of lung cancer organoids via the conversion of mesenchymal stem cells into alpha-smooth muscle actin (αSMA)-positive cells. Interestingly, the combination of anti-IL-6 antibody and cisplatin could destroy the lung cancer organoids, while cisplatin alone could not. Furthermore, IL-6 mRNA-positive cancer cells were found in clinical lung cancer samples. These results suggest that IL-6 could be a novel therapeutic target in lung cancer.
Cell Metab. 2018 Dec 28.
2019 Jan 03
Ogrodnik M, Zhu Y, Langhi LGP, Tchkonia T, Krüger P, Fielder E, Victorelli S, Ruswhandi RA, Giorgadze N, Pirtskhalava T, Podgorni O, Enikolopov G, Johnson KO, Xu M, Inman C, Schafer M, Weigl M, Ikeno Y, Burns TC, Passos JF, von Zglinicki T, Kirkland JL, Jurk D.
PMID: 30612898 | DOI: 10.1016/j.cmet.2018.12.008
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com