Hatta A, Kurose M, Sullivan C, Okamoto K, Fujii N, Yamamura K, Meng ID.
PMID: 30969886 | DOI: 10.1152/jn.00126.2018
Corneal cool cells are sensitive to the ocular fluid status of the corneal surface and may be responsible for the regulation of basal tear production. Previously, we have shown that dry eye, induced by lacrimal gland excision (LGE) in rats, sensitized corneal cool cells to the TRPM8 agonist menthol and to cool stimulation. In the present study, we examined the effect of dry eye on the sensitivity of cool cells to the TRPV1 agonist capsaicin. Single-unit recordings in the trigeminal ganglion were performed 7-10 days after LGE. At a concentration of 0.3mM, capsaicin did not affect ongoing or cool-evoked activity in control animals yet facilitated ongoing activity and suppressed cool-evoked activity in LGE animals. At higher concentrations (3 mM), capsaicin continued to facilitate ongoing activity in LGE animals but suppressed ongoing activity in control animals. Higher concentrations of capsaicin also suppressed cool-evoked activity in both groups of animals, with an overall greater effect in LGE animals. In addition to altering cool-evoked activity, capsaicin enhanced the sensitivity of cool cells to heat in LGE animals. Capsaicin-induced changes were prevented by the application of the TRPV1 antagonist capsazepine. Using fluorescent in situ hybridization, TRPV1 and TRPM8 expression was examined in retrograde tracer identified corneal neurons. The co-expression of TRPV1 and TRPM8 in corneal neurons was significantly greater in LGE treated animals when compared to sham controls. These results indicate that LGE-induced dry eye increases TRPV1-mediated responses in corneal cool cells at least in part through the increased expression of TRPV1.
European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology
Ngoc, KH;Kecskés, A;Kepe, E;Nabi, L;Keeble, J;Borbély, É;Helyes, Z;
PMID: 37156112 | DOI: 10.1016/j.euroneuro.2023.04.017
The Transient Receptor Potential Vanilloid 1 (TRPV1) non-selective cation channel predominantly expressed in primary sensory neurons of the dorsal root and trigeminal ganglia mediates pain and neurogenic inflammation. TRPV1 mRNA and immunoreactivity were described in the central nervous system (CNS), but its precise expression pattern and function have not been clarified. Here we investigated Trpv1 mRNA expression in the mouse brain using ultrasensitive RNAScope in situ hybridization. The role of TRPV1 in anxiety, depression-like behaviors and memory functions was investigated by TRPV1-deficient mice and pharmacological antagonism by AMG9810. Trpv1 mRNA is selectively expressed in the supramammillary nucleus (SuM) co-localized with Vglut2 mRNA, but not with tyrosine hydroxylase immunopositivity demonstrating its presence in glutamatergic, but not dopaminergic neurons. TRPV1-deleted mice exhibited significantly reduced anxiety in the Light-Dark box and depression-like behaviors in the Forced Swim Test, but their performance in the Elevated Plus Maze as well as their spontaneous locomotor activity, memory and learning function in the Radial Arm Maze, Y-maze and Novel Object Recognition test were not different from WTs. AMG9810 (intraperitoneal injection 50 mg/kg) induced anti-depressant, but not anxiolytic effects. It is concluded that TRPV1 in the SuM might have functional relevance in mood regulation and TRPV1 antagonism could be a novel perspective for anti-depressant drugs.
The CysLT2R receptor mediates leukotriene C4-driven acute and chronic itch
Proceedings of the National Academy of Sciences of the United States of America
Voisin, T;Perner, C;Messou, MA;Shiers, S;Ualiyeva, S;Kanaoka, Y;Price, TJ;Sokol, CL;Bankova, LG;Austen, KF;Chiu, IM;
PMID: 33753496 | DOI: 10.1073/pnas.2022087118
Acute and chronic itch are burdensome manifestations of skin pathologies including allergic skin diseases and atopic dermatitis, but the underlying molecular mechanisms are not well understood. Cysteinyl leukotrienes (CysLTs), comprising LTC4, LTD4, and LTE4, are produced by immune cells during type 2 inflammation. Here, we uncover a role for LTC4 and its signaling through the CysLT receptor 2 (CysLT2R) in itch. Cysltr2 transcript is highly expressed in dorsal root ganglia (DRG) neurons linked to itch in mice. We also detected CYSLTR2 in a broad population of human DRG neurons. Injection of leukotriene C4 (LTC4) or its nonhydrolyzable form NMLTC4, but neither LTD4 nor LTE4, induced dose-dependent itch but not pain behaviors in mice. LTC4-mediated itch differed in bout duration and kinetics from pruritogens histamine, compound 48/80, and chloroquine. NMLTC4-induced itch was abrogated in mice deficient for Cysltr2 or when deficiency was restricted to radioresistant cells. Itch was unaffected in mice deficient for Cysltr1, Trpv1, or mast cells (WSh mice). CysLT2R played a role in itch in the MC903 mouse model of chronic itch and dermatitis, but not in models of dry skin or compound 48/80- or Alternaria-induced itch. In MC903-treated mice, CysLT levels increased in skin over time, and Cysltr2-/- mice showed decreased itch in the chronic phase of inflammation. Collectively, our study reveals that LTC4 acts through CysLT2R as its physiological receptor to induce itch, and CysLT2R contributes to itch in a model of dermatitis. Therefore, targeting CysLT signaling may be a promising approach to treat inflammatory itch.
The Journal of clinical investigation
Chen, O;He, Q;Han, Q;Furutani, K;Gu, Y;Olexa, M;Ji, RR;
PMID: 36520531 | DOI: 10.1172/JCI160807
Our understanding of neuropathic itch is limited, due to the lack of relevant animal models. Patients with cutaneous T-cell lymphoma (CTCL) suffer from severe itching. Here we characterize a mouse model of chronic itch with remarkable lymphoma growth, immune cell accumulation, and persistent pruritus. Intradermal CTCL inoculation produces time-dependent changes in nerve innervations in lymphoma-bearing skin. In the early-phase (20 days), CTCL causes hyper-innervations in the epidermis. However, chronic itch is associated with loss of epidermal nerve fibers in the late-phases (40 and 60 days). CTCL is also characterized by marked nerve innervations in mouse lymphoma. Blockade of C-fibers reduced pruritus at early- and late-phases, whereas blockade of A-fibers only suppressed late-phase itch. Intrathecal gabapentin injection reduced late-phase but not early-phase pruritus. IL-31 is upregulated in mouse lymphoma, while its receptor Il31ra was persistently upregulated in Trpv1-expressing sensory neurons in CTCL mice. Intratumoral anti-IL-31 treatment effectively suppressed CTCL-induced scratching and alloknesis (mechanical itch). Finally, intrathecal administration of TLR4 antagonist attenuated pruritus in early and late phases and in both sexes. Collectively, we have established a mouse model of neuropathic and cancer itch with relevance to human disease. Our findings also suggest distinct mechanisms underlying acute, chronic, and neuropathic itch.
Papalampropoulou-Tsiridou, M;Shiers, S;Wang, F;Godin, AG;Price, TJ;De Koninck, Y;
PMID: 36337346 | DOI: 10.1093/braincomms/fcac256
Acid-sensing ion channels (ASICs) play a critical role in nociception in human sensory neurons. Four genes (ASIC1, ASIC2, ASIC3, and ASIC4) encoding multiple subunits through alternative splicing have been identified in humans. Real time-PCR experiments showed strong expression of three subunits ASIC1, ASIC2, and ASIC3 in human dorsal root ganglia; however, their detailed expression pattern in different neuronal populations has not been investigated yet. In the current study, using an in situ hybridization approach (RNAscope), we examined the presence of ASIC1, ASIC2, and ASIC3 mRNA in three subpopulations of human dorsal root ganglia neurons. Our results revealed that ASIC1 and ASIC3 were present in the vast majority of dorsal root ganglia neurons, while ASIC2 was only expressed in less than half of dorsal root ganglia neurons. The distribution pattern of the three ASIC subunits was the same across the three populations of dorsal root ganglia neurons examined, including neurons expressing the REarranged during Transfection (RET) receptor tyrosine kinase, calcitonin gene-related peptide, and a subpopulation of nociceptors expressing Transient Receptor Potential Cation Channel Subfamily V Member 1. These results strongly contrast the expression pattern of Asics in mice since our previous study demonstrated differential distribution of Asics among the various subpopulation of dorsal root ganglia neurons. Given the distinct acid-sensitivity and activity dynamics among different ASIC channels, the expression differences between human and rodents should be taken under consideration when evaluating the translational potential and efficiency of drugs targeting ASICs in rodent studies.
Moya, MV;Kim, RD;Rao, MN;Cotto, BA;Pickett, SB;Sferrazza, CE;Heintz, N;Schmidt, EF;
PMID: 35320722 | DOI: 10.1016/j.celrep.2022.110556
Many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), lead to the selective degeneration of discrete cell types in the CNS despite the ubiquitous expression of many genes linked to disease. Therapeutic advancement depends on understanding the unique cellular adaptations that underlie pathology of vulnerable cells in the context of disease-causing mutations. Here, we employ bacTRAP molecular profiling to elucidate cell type-specific molecular responses of cortical upper motor neurons in a preclinical ALS model. Using two bacTRAP mouse lines that label distinct vulnerable or resilient projection neuron populations in motor cortex, we show that the regulation of oxidative phosphorylation (Oxphos) pathways is a common response in both cell types. However, differences in the baseline expression of genes involved in Stem and the handling of reactive oxygen species likely lead to the selective degeneration of the vulnerable cells. These results provide a framework to identify cell-type-specific processes in neurodegenerative disease.
International Journal of Molecular Sciences
Vanneste, M;Mulier, M;Nogueira Freitas, A;Van Ranst, N;Kerstens, A;Voets, T;Everaerts, W;
| DOI: 10.3390/ijms23010107
The cation channel TRPM3 is activated by heat and the neurosteroid pregnenolone sulfate. TRPM3 is expressed on sensory neurons innervating the skin, where together with TRPV1 and TRPA1, it functions as one of three redundant sensors of acute heat. Moreover, functional upregulation of TRPM3 during inflammation contributes to heat hyperalgesia. The role of TRPM3 in sensory neurons innervating internal organs such as the bladder is currently unclear. Here, using retrograde labeling and single-molecule fluorescent RNA in situ hybridization, we demonstrate expression of mRNA encoding TRPM3 in a large subset of dorsal root ganglion (DRG) neurons innervating the mouse bladder, and confirm TRPM3 channel functionality in these neurons using Fura-2-based calcium imaging. After induction of cystitis by injection of cyclophosphamide, we observed a robust increase of the functional responses to agonists of TRPM3, TRPV1, and TRPA1 in bladder-innervating DRG neurons. Cystometry and voided spot analysis in control and cyclophosphamide-treated animals did not reveal differences between wild type and TRPM3-deficient mice, indicating that TRPM3 is not critical for normal voiding. We conclude that TRPM3 is functionally expressed in a large proportion of sensory bladder afferent, but its role in bladder sensation remains to be established.
The Journal of biological chemistry
Fu, Y;Miyazaki, K;Chiba, Y;Funada, K;Yuta, T;Tian, T;Mizuta, K;Kawahara, J;Zhang, L;Martin, D;Iwamoto, T;Takahashi, I;Fukumoto, S;Yoshizaki, K;
PMID: 36963497 | DOI: 10.1016/j.jbc.2023.104638
Lipid rafts are membrane microdomains rich in cholesterol, sphingolipids, glycosylphosphatidylinositol-anchored proteins (GPI-APs), and receptors. These lipid raft components are localized at the plasma membrane and are essential for signal transmission and organogenesis. However, few reports have been published on the specific effects of lipid rafts on tooth development. Using microarray and single-cell RNA sequencing methods, we found that a GPI-AP, lymphocyte antigen-6 (Ly6)/Plaur domain-containing 1 (Lypd1), was specifically expressed in preodontoblasts. Depletion of Lypd1 in tooth germ using an ex vivo organ culture system and in mouse dental pulp (mDP) cells resulted in the inhibition of odontoblast differentiation. Activation of bone morphogenetic protein (BMP) signaling by BMP2 treatment in mDP cells promoted odontoblast differentiation via phosphorylation of Smad1/5/8, while this BMP2-mediated odontoblast differentiation was inhibited by depletion of Lypd1. Furthermore, we created a deletion construct of the C-terminus containing the omega site in LYPD1; this site is necessary for localizing GPI-APs to the plasma membrane and lipid rafts. We identified that this site is essential for odontoblast differentiation and morphological change of mDP cells. These findings demonstrated that LYPD1 is a novel marker of preodontoblasts in the developing tooth; additionally, they suggest that LYPD1 is important for tooth development and that it plays a pivotal role in odontoblast differentiation by regulating Smad1/5/8 phosphorylation through its effect as a GPI-AP in lipid rafts.
Capsazepine decreases corneal pain syndrome in severe dry eye disease
Journal of neuroinflammation
Fakih, D;Guerrero-Moreno, A;Baudouin, C;Goazigo, AR;Parsadaniantz, SM;
PMID: 33975636 | DOI: 10.1186/s12974-021-02162-7
Dry eye disease (DED) is a multifactorial disease of the ocular surface accompanied by neurosensory abnormalities. Here, we evaluated the effectiveness of transient receptor potential vanilloid-1 (TRPV1) blockade to alleviate ocular pain, neuroinflammation, and anxiety-like behavior associated with severe DED. Chronic DED was induced by unilateral excision of the Harderian and extraorbital lacrimal glands of adult male mice. Investigations were conducted at 21 days after surgery. The mRNA levels of TRPV1, transient receptor potential ankyrin-1 (TRPA1), and acid-sensing ion channels 1 and 3 (ASIC1 and ASIC3) in the trigeminal ganglion (TG) were evaluated by RNAscope in situ hybridization. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous and stimulated (cold, heat, and acid) corneal nerve responsiveness in ex vivo eye preparations. DED mice received topical instillations of the TRPV1 antagonist (capsazepine) twice a day for 2 weeks from d7 to d21 after surgery. The expression of genes involved in neuropathic and inflammatory pain was evaluated in the TG using a global genomic approach. Chemical and mechanical corneal nociception and spontaneous ocular pain were monitored. Finally, anxiety-like behaviors were assessed by elevated plus maze and black and white box tests. First, in situ hybridization showed DED to trigger upregulation of TRPV1, TRPA1, ASIC1, and ASIC3 mRNA in the ophthalmic branch of the TG. DED also induced overexpression of genes involved in neuropathic and inflammatory pain in the TG. Repeated instillations of capsazepine reduced corneal polymodal responsiveness to heat, cold, and acidic stimulation in ex vivo eye preparations. Consistent with these findings, chronic capsazepine instillation inhibited the upregulation of genes involved in neuropathic and inflammatory pain in the TG of DED animals and reduced the sensation of ocular pain, as well as anxiety-like behaviors associated with severe DED. These data provide novel insights on the effectiveness of TRPV1 antagonist instillation in alleviating abnormal corneal neurosensory symptoms induced by severe DED, opening an avenue for the repositioning of this molecule as a potential analgesic treatment for patients suffering from chronic DED.
Cereb Cortex. 2018 Dec 7.
Yang L, Yang Y, Yuan J, Sun Y, Dai J, Su B.
PMID: 30535007 | DOI: 10.1093/cercor/bhy286
The von Economo neurons (VENs) are specialized large bipolar projection neurons with restricted distribution in the human brain, and they are far more abundant in humans than in non-human primates. However, VEN functions remain elusive due to the difficulty of isolating VENs and dissecting their connections in the brain. Here, we combined laser-capture-microdissection with RNA sequencing to describe the transcriptomic profile of VENs from human anterior cingulate cortex (ACC). Using pyramidal neurons as reference cells, we identified 344 genes with VEN-associated expression differences, including 215 higher and 129 lower expression genes. Functional enrichment and protein–protein interaction network analyses showed that these genes with VEN-associated expression differences are involved in VEN morphogenesis and functions, such as dendrite branching and axon myelination, and many of them are associated with human social-emotional disorders. With the use of in situ hybridization and immunohistochemistry assays, we validated four novel VEN markers (VAT1L, CHST8, LYPD1, and SULF2). Collectively, we generated a full-spectrum expression profile of VENs from human ACC, greatly enlarging the pool of genes with VEN-associated expression differences that can help researchers to understand the role of VENs in normal and disordered human brains.
Matsushima, A;Pineda, SS;Crittenden, JR;Lee, H;Galani, K;Mantero, J;Tombaugh, G;Kellis, M;Heiman, M;Graybiel, AM;
PMID: 36650127 | DOI: 10.1038/s41467-022-35752-x
Striatal projection neurons (SPNs), which progressively degenerate in human patients with Huntington's disease (HD), are classified along two axes: the canonical direct-indirect pathway division and the striosome-matrix compartmentation. It is well established that the indirect-pathway SPNs are susceptible to neurodegeneration and transcriptomic disturbances, but less is known about how the striosome-matrix axis is compromised in HD in relation to the canonical axis. Here we show, using single-nucleus RNA-sequencing data from male Grade 1 HD patient post-mortem brain samples and male zQ175 and R6/2 mouse models, that the two axes are multiplexed and differentially compromised in HD. In human HD, striosomal indirect-pathway SPNs are the most depleted SPN population. In mouse HD models, the transcriptomic distinctiveness of striosome-matrix SPNs is diminished more than that of direct-indirect pathway SPNs. Furthermore, the loss of striosome-matrix distinction is more prominent within indirect-pathway SPNs. These results open the possibility that the canonical direct-indirect pathway and striosome-matrix compartments are differentially compromised in late and early stages of disease progression, respectively, differentially contributing to the symptoms, thus calling for distinct therapeutic strategies.
Nguyen MQ, Wu Y, Bonilla LS, von Buchholtz LJ, Ryba NJP.
PMID: 28957441 | DOI: 10.1371/journal.pone.0185543
The trigeminal ganglion contains somatosensory neurons that detect a range of thermal, mechanical and chemical cues and innervate unique sensory compartments in the head and neck including the eyes, nose, mouth, meninges and vibrissae. We used single-cell sequencing and in situ hybridization to examine the cellular diversity of the trigeminal ganglion in mice, defining thirteen clusters of neurons. We show that clusters are well conserved in dorsal root ganglia suggesting they represent distinct functional classes of somatosensory neurons and not specialization associated with their sensory targets. Notably, functionally important genes (e.g. the mechanosensory channel Piezo2 and the capsaicin gated ion channel Trpv1) segregate into multiple clusters and often are expressed in subsets of cells within a cluster. Therefore, the 13 genetically-defined classes are likely to be physiologically heterogeneous rather than highly parallel (i.e., redundant) lines of sensory input. Our analysis harnesses the power of single-cell sequencing to provide a unique platform for in silico expression profiling that complements other approaches linking gene-expression with function and exposes unexpected diversity in the somatosensory system.