Noh, YW;Yook, C;Kang, J;Lee, S;Kim, Y;Yang, E;Kim, H;Kim, E;
PMID: 35982261 | DOI: 10.1038/s42003-022-03813-y
IRSp53 (or BAIAP2) is an abundant excitatory postsynaptic scaffolding/adaptor protein that is involved in actin regulation and has been implicated in autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder. IRSp53 deletion in mice leads to enhanced NMDA receptor (NMDAR) function and social deficits that are responsive to NMDAR inhibition. However, it remains unclear whether IRSp53 re-expression in the adult IRSp53-mutant mouse brain after the completion of brain development could reverse these synaptic and behavioral dysfunctions. Here we employed a brain-blood barrier (BBB)-penetrant adeno-associated virus (AAV) known as PHP.eB to drive adult IRSp53 re-expression in IRSp53-mutant mice. The adult IRSp53 re-expression normalized social deficits without affecting hyperactivity or anxiety-like behavior. In addition, adult IRSp53 re-expression normalized NMDAR-mediated excitatory synaptic transmission in the medial prefrontal cortex. Our results suggest that adult IRSp53 re-expression can normalize synaptic and behavioral deficits in IRSp53-mutant mice and that BBB-penetrant adult gene re-expression has therapeutic potential.
Eur J Neurosci. 2018 Oct 11.
Rubio FJ, Quintana-Feliciano R, Warren BL, Li X, Witonsky KFR, Soto Del Valle F, Selvam PV, Caprioli D, Venniro M, Bossert JM, Shaham Y, Hope BT.
PMID: 30307667 | DOI: 10.1111/ejn.14203
Many preclinical studies examined cue-induced relapse to heroin and cocaine seeking in animal models, but most of these studies examined only one drug at a time. In human addicts, however, polydrug use of cocaine and heroin is common. We used a polydrug self-administration relapse model in rats to determine similarities and differences in brain areas activated during cue-induced reinstatement of heroin and cocaine seeking. We trained rats to lever press for cocaine (1.0 mg/kg/infusion, 3-h/d, 18 d) or heroin (0.03 mg/kg/infusion) on alternating days (9 d for each drug); drug infusions were paired with either intermittent or continuous light cue. Next, the rats underwent extinction training followed by tests for cue-induced reinstatement where they were exposed to either heroin- or cocaine-associated cues. We observed cue-selective reinstatement of drug seeking: the heroin cue selectively reinstated heroin seeking and the cocaine cue selectively reinstated cocaine seeking. We used Fos immunohistochemistry to assess cue-induced neuronal activation in different subregions of the medial prefrontal cortex (mPFC), dorsal striatum (DS), nucleus accumbens (NAc), and amygdala. Fos expression results indicated that only the prelimbic cortex (PL) was activated by both heroin and cocaine cues; in contrast, no significant cue-induced neuronal activation was observed in other brain areas. RNA in situ hybridization indicated that the proportion of glutamatergic and GABAergic markers in PL Fos-expressing cells were similar for the heroin and cocaine cue-activated neurons. Overall the results indicate that PL may be a common brain area involved in both heroin and cocaine seeking during polydrug use.
Ng, AJ;Vincelette, LK;Li, J;Brady, BH;Christianson, JP;
PMID: 37230216 | DOI: 10.1016/j.neuropharm.2023.109598
Behaviors associated with distress can affect the anxiety-like states in observers and this social transfer of affect shapes social interactions among stressed individuals. We hypothesized that social reactions to stressed individuals engage the serotonergic dorsal raphe nucleus (DRN) which promotes anxiety-like behavior via postsynaptic action of serotonin at serotonin 2C (5-HT2C) receptors in the forebrain. First, we inhibited the DRN by administering an agonist (8-OH-DPAT, 1 μg in 0.5 μL) for the inhibitory 5-HT1A autoreceptors which silences 5-HT neuronal activity. 8-OH-DPAT prevented the approach and avoidance, respectively, of stressed juvenile (PN30) or stressed adult (PN60) conspecifics in the social affective preference (SAP) test in rats. Similarly, systemic administration of a 5-HT2C receptor antagonist (SB242084, 1 mg/kg, i.p.) prevented approach and avoidance of stressed juvenile or adult conspecifics, respectively. Seeking a locus of 5-HT2C action, we considered the posterior insular cortex which is critical for social affective behaviors and rich with 5-HT2C receptors. SB242084 administered directly into the insular cortex (5 μM in 0.5 μL bilaterally) interfered with the typical approach and avoidance behaviors observed in the SAP test. Finally, using fluorescent in situ hybridization, we found that 5-HT2C receptor mRNA (htr2c) is primarily colocalized with mRNA associated with excitatory glutamatergic neurons (vglut1) in the posterior insula. Importantly, the results of these treatments were the same in male and female rats. These data suggest that interactions with stressed others require the serotonergic DRN and that serotonin modulates social affective decision-making via action at insular 5-HT2C receptors.
bioRxiv : the preprint server for biology
Ng, AJ;Vincelette, LK;Li, J;Brady, BH;Christianson, JP;
PMID: 36824837 | DOI: 10.1101/2023.02.18.529065
Social interaction allows for the transfer of affective states among individuals, and the behaviors and expressions associated with pain and fear can evoke anxiety-like states in observers which shape subsequent social interactions. We hypothesized that social reactions to stressed individuals engage the serotonergic dorsal raphe nucleus (DRN) which promotes anxiety-like behavior via postsynaptic action of serotonin at serotonin 2C (5-HT 2C ) receptors in the forebrain. First, we inhibited the DRN by administering an agonist (8-OH-DPAT, 1µg in 0.5µL) for the inhibitory 5-HT 1A autoreceptors which silences 5-HT neuronal activity via G-protein coupled inward rectifying potassium channels. 8-OH-DPAT prevented the approach and avoidance, respectively, of stressed juvenile (PN30) or stressed adult (PN50) conspecifics in the social affective preference (SAP) test in rats. Similarly, systemic administration of a 5-HT 2C receptor antagonist (SB242084, 1mg/kg, i.p.) prevented approach and avoidance of stressed juvenile or adult conspecifics, respectively. Seeking a locus of 5-HT 2C action, we considered the posterior insular cortex which is critical for social affective behaviors and rich with 5-HT 2C receptors. SB242084 administered directly into the insular cortex (5µM bilaterally in 0.5µL ) interfered with the typical approach and avoidance behaviors observed in the SAP test. Finally, using fluorescent in situ hybridization, we found that 5-HT 2C receptor mRNA ( htr2c) is primarily colocalized with mRNA associated with excitatory glutamatergic neurons ( vglut1 ) in the posterior insula. Importantly, the results of these treatments were the same in male and female rats. These data suggest that interactions with stressed others require the serotonergic DRN and that serotonin modulates social affective decision-making via action at insular 5-HT 2C receptors.
J Mol Cell Cardiol. 2019 Jan 3.
Satoh M, Nomura S, Harada M, Yamaguchi T, Ko T, Sumida T, Toko H, Naito AT, Takeda N, Tobita T, Fujita T, Ito M, Fujita K, Ishizuka M, Kariya T, Akazawa H, Kobayashi Y, Morita H, Takimoto E, Aburatani H, Komuro I.
PMID: 30611794 | DOI: 10.1016/j.yjmcc.2018.12.018
Abstract BACKGROUND: The heart responds to hemodynamic overload through cardiac hypertrophy and activation of the fetal gene program. However, these changes have not been thoroughly examined in individual cardiomyocytes, and the relation between cardiomyocyte size and fetal gene expression remains elusive. We established a method of high-throughput single-molecule RNA imaging analysis of in vivo cardiomyocytes and determined spatial and temporal changes during the development of heart failure. METHODS AND RESULTS: We applied three novel single-cell analysis methods, namely, single-cell quantitative PCR (sc-qPCR), single-cell RNA sequencing (scRNA-seq), and single-molecule fluorescence in situ hybridization (smFISH). Isolated cardiomyocytes and cross sections from pressure overloaded murine hearts after transverse aortic constriction (TAC) were analyzed at an early hypertrophy stage (2 weeks, TAC2W) and at a late heart failure stage (8 weeks, TAC8W). Expression of myosin heavy chain β (Myh7), a representative fetal gene, was induced in some cardiomyocytes in TAC2W hearts and in more cardiomyocytes in TAC8W hearts. Expression levels of Myh7 varied considerably among cardiomyocytes. Myh7-expressing cardiomyocytes were significantly more abundant in the middle layer, compared with the inner or outer layers of TAC2W hearts, while such spatial differences were not observed in TAC8W hearts. Expression levels of Myh7 were inversely correlated with cardiomyocyte size and expression levels of mitochondria-related genes. CONCLUSIONS: We developed a new image-analysis pipeline to allow automated and unbiased quantification of gene expression at the single-cell level and determined the spatial and temporal regulation of heterogenous Myh7 expression in cardiomyocytes after pressure overload.
Ataman B, Boulting GL, Harmin DA, Yang MG, Baker-Salisbury M, Yap EL, Malik AN, Mei K, Rubin AA, Spiegel I, Durresi E, Sharma N, Hu LS, Pletikos M, Griffith EC, Partlow JN, Stevens CR, Adli M, Chahrour M, Sestan N, Walsh CA, Berezovskii VK, Livingstone MS
PMID: 27830782 | DOI: 10.1038/nature20111
Sensory stimuli drive the maturation and function of the mammalian nervous system in part through the activation of gene expressionnetworks that regulate synapse development and plasticity. These networks have primarily been studied in mice, and it is not known whether there are species- or clade-specific activity-regulated genes that control features of brain development and function. Here we use transcriptional profiling of human fetal brain cultures to identify an activity-dependent secreted factor, Osteocrin (OSTN), that is induced by membrane depolarization of human but not mouse neurons. We find that OSTN has been repurposed in primates through the evolutionary acquisition of DNA regulatory elements that bind the activity-regulated transcription factor MEF2. In addition, we demonstrate that OSTN is expressed in primate neocortex and restricts activity-dependent dendritic growth in human neurons. These findings suggest that, in response to sensory input, OSTN regulates features of neuronal structure and function that are unique to primates.
Erben L, Buonanno A.
PMID: 30791216 | DOI: 10.1002/cpns.63
Fluorescent detection of transcripts using RNAscope has quickly become a standard in situ hybridization (ISH) approach in neuroscience with over 400 publications since its introduction in 2012. RNAscope's sensitivity and specificity allow the simultaneously detection of up to three low abundance mRNAs in single cells (i.e., multiplexing) and, in contrast to other ISH techniques, RNAscope is performed in 1 day. BaseScope, a newer ultrasensitive platform, uses improved amplification chemistry of single oligonucleotide probe pairs (∼50 bases). This technique allows discrimination of single nucleotide polymorphisms or splice variants that differ by short exons. A present limitation of BaseScope is that expression analysis is limited to a single gene (i.e., single-plexing). This article outlines detailed protocols for both RNAscope and BaseScope in neuronal tissue. We discuss how to perform ISH experiments using either fresh-frozen or formalin-fixed paraffin-embedded sections, as well as dissociated cultured neurons. We also outline how to obtain quantitative data from hybridized tissue sections.
American journal of translational research
Jiao, Q;Zou, F;Li, S;Wang, J;Xiao, Y;Guan, Z;Dong, L;Tian, J;Li, S;Wang, R;Zhang, J;Li, H;
PMID: 36105026
To validate that dexlansoprazole, an anti-acid drug, can prevent pulmonary artery hypertension (PAH) in preclinical animal models and find the possible mechanism of action of dexlansoprazole for this new indication.The efficacy of dexlansoprazole to attenuate PAH in vivo was evaluated in PAH animal models. Plasma guanosine 3', 5'-cyclic phosphate (cGMP) in PAH rats was measured by enzyme linked immunosorbent assay (ELISA). To investigate the anti-PAH effect of dexlansoprazole in vitro, proliferation and migration assays of primary cultured pulmonary artery smooth muscle cells (PASMCs) were performed. Furthermore, dexlansoprazole's function on fibroblast transition of vascular smooth muscle cells (VSMC) was explored by single cell ribonucleic acid (RNA) sequencing and RNAscope.Dexlansoprazole could attenuate the pathologic process in monocrotaline (MCT)-, hypoxia-induced PAH rats and SU5416/hypoxia (SuHy)-induced PAH mice. The intervention with dexlansoprazole significantly inhibited elevated right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular wall thickness. Furthermore, plasma cGMP in MCT-induced PAH rats was restored after receiving dexlansoprazole. In vitro, dexlansoprazole could inhibit PASMCs' proliferation and migration stimulated by platelet derived growth factor-BB (PDGF-BB). Moreover, dexlansoprazole significantly ameliorated pulmonary vascular remodeling by inhibiting VSMC phenotypic transition to fibroblast-like cells in a VSMC-specific multispectral lineage-tracing mouse.Dexlansoprazole can prevent PAH through promoting cGMP generation and inhibiting pulmonary vascular remodeling through restraining PASMCs' proliferation, migration, and phenotypic transition to fibroblast-like cells. Consequently, PAH might be a new indication for dexlansoprazole.AJTR
Du, Y;Yu, K;Yan, C;Wei, C;Zheng, Q;Qiao, Y;Liu, Y;Han, J;Ren, W;Liu, Z;
PMID: 35613854 | DOI: 10.1523/ENEURO.0487-21.2022
The endogenous opioid system plays a crucial role in stress-induced analgesia. Mu-opioid receptors (MORs), one of the major opioid receptors, are expressed widely in subpopulations of cells throughout the CNS. However, the potential roles of MORs expressed in glutamatergic (MORGlut) and γ-aminobutyric acidergic (MORGABA) neurons in stress-induced analgesia remain unclear. By examining tail-flick latencies to noxious radiant heat of male mice, here we investigated the contributions of MORGABA and MORGlut to behavioral analgesia and activities of neurons projecting from periaqueductal gray (PAG) to rostral ventromedial medulla (RVM) induced by a range of time courses of forced swim exposure. The moderate but not transitory or prolonged swim exposure induced a MOR-dependent analgesia, although all of these three stresses enhanced β-endorphin release. Selective deletion of MORGABA but not MORGlut clearly attenuated analgesia and blocked the enhancement of activities of PAG-RVM neurons induced by moderate swim exposure. Under transitory swim exposure, in contrast, selective deletion of MORGlut elicited an analgesia behavior via strengthening the activities of PAG-RVM neurons. These results indicate that MOR-dependent endogenous opioid signaling participates in nociceptive modulation in a wide range, not limited to moderate, of stress intensities. Endogenous activation of MORGABA exerts analgesia, whereas MORGlut produces antianalgesia. More importantly, with an increase of stress intensities, the efficiencies of MORs on nociception shifts from balance between MORGlut and MORGABA to biasing toward MORGABA-mediated processes. Our results point to the cellular dynamic characteristics of MORs expressed in excitatory and inhibitory neurons in pain modulation under various stress intensities.
Larsen, F;Hansen, D;Terkelsen, M;Bendixen, S;Avolio, F;Wernberg, C;Lauridsen, M;Grønkjaer, L;Jacobsen, B;Klinggaard, E;Mandrup, S;Di Caterino, T;Siersbæk, M;Chandran, V;Graversen, J;Krag, A;Grøntved, L;Ravnskjaer, K;
| DOI: 10.1016/j.jhepr.2022.100615
Background & Aims Non-alcoholic fatty liver disease (NAFLD) and its progressive form, non-alcoholic steatohepatitis (NASH), are the hepatic manifestations of metabolic syndrome. Histological assessment of liver biopsies is the gold standard for diagnosis of NASH. A Liver biopsy is resource heavy, can lead to complications such as bleeding, and does not fully capture tissue heterogeneity of the fibrotic liver. Therefore, non-invasive biomarkers that can reflect an integrated state of the liver are highly needed to improve diagnosis and sampling bias. Hepatic stellate cells (HSCs) are central in development of hepatic fibrosis, a hallmark of NASH. Secreted HSC-specific proteins may, therefore, reflect disease state in the NASH liver and serve as non-invasive diagnostic biomarkers. Methods We performed RNA-sequencing on liver biopsies from a histological characterised cohort of obese patients (n = 30, body mass index > 35 kg/m2) to identify and evaluate HSC-specific genes encoding secreted proteins. Bioinformatics was used to identify potential biomarkers and their expression at single-cell resolution. We validated our findings by single-molecule fluorescence in situ hybridisation (smFISH) and ELISA to detect mRNA in liver tissue and protein levels in plasma, respectively. Results Hepatic expression of SPARC-related modular calcium-binding protein 2 (SMOC2) was increased in NASH compared no-NAFLD (p.adj < 0.001). Single-cell RNA-sequencing data indicated SMOC2 expression by HSCs, which was validated using smFISH. Finally, plasma SMOC2 was elevated in NASH compared to no-NAFLD (p < 0.001) with a predictive accuracy of AUROC 0.88. Conclusions We propose increased SMOC2 in plasma reflects HSC activation, a key cellular event associated with NASH progression, and may serve as a non-invasive biomarker of NASH.
Hrvatin S, Hochbaum DR, Nagy MA, Cicconet M, Robertson K, Cheadle L, Zilionis R, Ratner A, Borges-Monroy R, Klein AM, Sabatini BL, Greenberg ME.
PMID: 29230054 | DOI: 10.1038/s41593-017-0029-5
Activity-dependent transcriptional responses shape cortical function. However, a comprehensive understanding of the diversity of these responses across the full range of cortical cell types, and how these changes contribute to neuronal plasticity and disease, is lacking. To investigate the breadth of transcriptional changes that occur across cell types in the mouse visual cortex after exposure to light, we applied high-throughput single-cell RNA sequencing. We identified significant and divergent transcriptional responses to stimulation in each of the 30 cell types characterized, thus revealing 611 stimulus-responsive genes. Excitatory pyramidal neurons exhibited inter- and intralaminar heterogeneity in the induction of stimulus-responsive genes. Non-neuronal cells showed clear transcriptional responses that may regulate experience-dependent changes in neurovascular coupling and myelination. Together, these results reveal the dynamic landscape of the stimulus-dependent transcriptional changes occurring across cell types in the visual cortex; these changes are probably critical for cortical function and may be sites of deregulation in developmental brain disorders.
Sottile SY, Hackett TA, Cai R, Ling L, Llano DA, Caspary DM.
PMID: 29061702 | DOI: 10.1523/JNEUROSCI.1795-17.2017
Acetylcholine is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. In vitro electrophysiological/optogenetic methods were used to examine responses of MGB neurons following activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. In situ hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear negatively affected by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal.Significance StatementThe pedunculopontine tegmental nucleus (PPTg) is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system which controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body; MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely selectively increasing gain and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may negatively impact speech understanding in the elderly population.