Sun, Y;Asano, K;Sedes, L;Cantalupo, A;Hansen, J;Iyengar, R;Walsh, MJ;Ramirez, F;
PMID: 37022786 | DOI: 10.1172/jci.insight.168793
To improve our limited understanding of the pathogenesis of thoracic aortic aneurysm (TAA) leading to acute aortic dissection, single-cell RNA sequencing (scRNA-seq) was employed to profile disease-relevant transcriptomic changes of aortic cell populations in a well-characterized mouse model of the most commonly diagnosed form of Marfan syndrome (MFS). As result, two discrete sub-populations of aortic cells (SMC3 and EC4) were identified only in the aorta of Fbn1mgR/mgR mice. SMC3 highly express genes related to extracellular matrix formation and nitric oxide signaling, whereas EC4 transcriptional profile is enriched in SMC, fibroblast, and immune cell-related genes. Trajectory analysis predicted close phenotypic modulation between SMC3 and EC4, which were therefore analyzed together as a discrete MFS-modulated (MFSmod) sub-population. In situ hybridizations of diagnostic transcripts located MFSmod cells to the intima of Fbn1mgR/mgR aortas. Reference-based dataset integration revealed transcriptomic similarity between MFSmod and an SMC-derived cell cluster modulated in human TAA. Consistent with angiotensin II type I receptor (At1r) contribution to TAA development, MFSmod cells were absent in the aorta of Fbn1mgR/mgR mice treated with the At1r antagonist losartan. Altogether, our findings indicate that a discrete dynamic alteration of aortic cell identity is associated with dissecting TAA in MFS mice and increased risk of aortic dissection in MFS patients.
J Mol Cell Cardiol. 2019 Jan 3.
Satoh M, Nomura S, Harada M, Yamaguchi T, Ko T, Sumida T, Toko H, Naito AT, Takeda N, Tobita T, Fujita T, Ito M, Fujita K, Ishizuka M, Kariya T, Akazawa H, Kobayashi Y, Morita H, Takimoto E, Aburatani H, Komuro I.
PMID: 30611794 | DOI: 10.1016/j.yjmcc.2018.12.018
Abstract BACKGROUND: The heart responds to hemodynamic overload through cardiac hypertrophy and activation of the fetal gene program. However, these changes have not been thoroughly examined in individual cardiomyocytes, and the relation between cardiomyocyte size and fetal gene expression remains elusive. We established a method of high-throughput single-molecule RNA imaging analysis of in vivo cardiomyocytes and determined spatial and temporal changes during the development of heart failure. METHODS AND RESULTS: We applied three novel single-cell analysis methods, namely, single-cell quantitative PCR (sc-qPCR), single-cell RNA sequencing (scRNA-seq), and single-molecule fluorescence in situ hybridization (smFISH). Isolated cardiomyocytes and cross sections from pressure overloaded murine hearts after transverse aortic constriction (TAC) were analyzed at an early hypertrophy stage (2 weeks, TAC2W) and at a late heart failure stage (8 weeks, TAC8W). Expression of myosin heavy chain β (Myh7), a representative fetal gene, was induced in some cardiomyocytes in TAC2W hearts and in more cardiomyocytes in TAC8W hearts. Expression levels of Myh7 varied considerably among cardiomyocytes. Myh7-expressing cardiomyocytes were significantly more abundant in the middle layer, compared with the inner or outer layers of TAC2W hearts, while such spatial differences were not observed in TAC8W hearts. Expression levels of Myh7 were inversely correlated with cardiomyocyte size and expression levels of mitochondria-related genes. CONCLUSIONS: We developed a new image-analysis pipeline to allow automated and unbiased quantification of gene expression at the single-cell level and determined the spatial and temporal regulation of heterogenous Myh7 expression in cardiomyocytes after pressure overload.
American journal of translational research
Jiao, Q;Zou, F;Li, S;Wang, J;Xiao, Y;Guan, Z;Dong, L;Tian, J;Li, S;Wang, R;Zhang, J;Li, H;
PMID: 36105026
To validate that dexlansoprazole, an anti-acid drug, can prevent pulmonary artery hypertension (PAH) in preclinical animal models and find the possible mechanism of action of dexlansoprazole for this new indication.The efficacy of dexlansoprazole to attenuate PAH in vivo was evaluated in PAH animal models. Plasma guanosine 3', 5'-cyclic phosphate (cGMP) in PAH rats was measured by enzyme linked immunosorbent assay (ELISA). To investigate the anti-PAH effect of dexlansoprazole in vitro, proliferation and migration assays of primary cultured pulmonary artery smooth muscle cells (PASMCs) were performed. Furthermore, dexlansoprazole's function on fibroblast transition of vascular smooth muscle cells (VSMC) was explored by single cell ribonucleic acid (RNA) sequencing and RNAscope.Dexlansoprazole could attenuate the pathologic process in monocrotaline (MCT)-, hypoxia-induced PAH rats and SU5416/hypoxia (SuHy)-induced PAH mice. The intervention with dexlansoprazole significantly inhibited elevated right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular wall thickness. Furthermore, plasma cGMP in MCT-induced PAH rats was restored after receiving dexlansoprazole. In vitro, dexlansoprazole could inhibit PASMCs' proliferation and migration stimulated by platelet derived growth factor-BB (PDGF-BB). Moreover, dexlansoprazole significantly ameliorated pulmonary vascular remodeling by inhibiting VSMC phenotypic transition to fibroblast-like cells in a VSMC-specific multispectral lineage-tracing mouse.Dexlansoprazole can prevent PAH through promoting cGMP generation and inhibiting pulmonary vascular remodeling through restraining PASMCs' proliferation, migration, and phenotypic transition to fibroblast-like cells. Consequently, PAH might be a new indication for dexlansoprazole.AJTR
Larsen, F;Hansen, D;Terkelsen, M;Bendixen, S;Avolio, F;Wernberg, C;Lauridsen, M;Grønkjaer, L;Jacobsen, B;Klinggaard, E;Mandrup, S;Di Caterino, T;Siersbæk, M;Chandran, V;Graversen, J;Krag, A;Grøntved, L;Ravnskjaer, K;
| DOI: 10.1016/j.jhepr.2022.100615
Background & Aims Non-alcoholic fatty liver disease (NAFLD) and its progressive form, non-alcoholic steatohepatitis (NASH), are the hepatic manifestations of metabolic syndrome. Histological assessment of liver biopsies is the gold standard for diagnosis of NASH. A Liver biopsy is resource heavy, can lead to complications such as bleeding, and does not fully capture tissue heterogeneity of the fibrotic liver. Therefore, non-invasive biomarkers that can reflect an integrated state of the liver are highly needed to improve diagnosis and sampling bias. Hepatic stellate cells (HSCs) are central in development of hepatic fibrosis, a hallmark of NASH. Secreted HSC-specific proteins may, therefore, reflect disease state in the NASH liver and serve as non-invasive diagnostic biomarkers. Methods We performed RNA-sequencing on liver biopsies from a histological characterised cohort of obese patients (n = 30, body mass index > 35 kg/m2) to identify and evaluate HSC-specific genes encoding secreted proteins. Bioinformatics was used to identify potential biomarkers and their expression at single-cell resolution. We validated our findings by single-molecule fluorescence in situ hybridisation (smFISH) and ELISA to detect mRNA in liver tissue and protein levels in plasma, respectively. Results Hepatic expression of SPARC-related modular calcium-binding protein 2 (SMOC2) was increased in NASH compared no-NAFLD (p.adj < 0.001). Single-cell RNA-sequencing data indicated SMOC2 expression by HSCs, which was validated using smFISH. Finally, plasma SMOC2 was elevated in NASH compared to no-NAFLD (p < 0.001) with a predictive accuracy of AUROC 0.88. Conclusions We propose increased SMOC2 in plasma reflects HSC activation, a key cellular event associated with NASH progression, and may serve as a non-invasive biomarker of NASH.
Mathews S, Branch Woods A, Katano I, Makarov E, Thomas MB, Gendelman HE, Poluektova LY, Ito M, Gorantla S.
PMID: 30832693 | DOI: 10.1186/s13024-019-0311-y
Abstract
BACKGROUND:
Microglia are the principal innate immune defense cells of the centeral nervous system (CNS) and the target of the human immunodeficiency virus type one (HIV-1). A complete understanding of human microglial biology and function requires the cell's presence in a brain microenvironment. Lack of relevant animal models thus far has also precluded studies of HIV-1 infection. Productive viral infection in brain occurs only in human myeloid linage microglia and perivascular macrophages and requires cells present throughout the brain. Once infected, however, microglia become immune competent serving as sources of cellular neurotoxic factors leading to disrupted brain homeostasis and neurodegeneration.
METHODS:
Herein, we created a humanized bone-marrow chimera producing human "microglia like" cells in NOD.Cg-PrkdcscidIl2rgtm1SugTg(CMV-IL34)1/Jic mice. Newborn mice were engrafted intrahepatically with umbilical cord blood derived CD34+ hematopoietic stem progenitor cells (HSPC). After 3 months of stable engraftment, animals were infected with HIV-1ADA, a myeloid-specific tropic viral isolate. Virologic, immune and brain immunohistology were performed on blood, peripheral lymphoid tissues, and brain.
RESULTS:
Human interleukin-34 under the control of the cytomegalovirus promoter inserted in NSG mouse strain drove brain reconstitution of HSPC derived peripheral macrophages into microglial-like cells. These human cells expressed canonical human microglial cell markers that included CD14, CD68, CD163, CD11b, ITGB2, CX3CR1, CSFR1, TREM2 and P2RY12. Prior restriction to HIV-1 infection in the rodent brain rested on an inability to reconstitute human microglia. Thus, the natural emergence of these cells from ingressed peripheral macrophages to the brain could allow, for the first time, the study of a CNS viral reservoir. To this end we monitored HIV-1 infection in a rodent brain. Viral RNA and HIV-1p24 antigens were readily observed in infected brain tissues. Deep RNA sequencing of these infected mice and differential expression analysis revealed human-specific molecular signatures representative of antiviral and neuroinflammatory responses.
CONCLUSIONS:
This humanized microglia mouse reflected human HIV-1 infection in its known principal reservoir and showed the development of disease-specific innate immune inflammatory and neurotoxic responses mirroring what can occur in an infected human brain.
Worssam, MD;Lambert, J;Oc, S;Taylor, JC;Taylor, AL;Dobnikar, L;Chappell, J;Harman, JL;Figg, NL;Finigan, A;Foote, K;Uryga, AK;Bennett, MR;Spivakov, M;Jørgensen, HF;
PMID: 35994249 | DOI: 10.1093/cvr/cvac138
Quiescent, differentiated adult vascular smooth muscle cells (VSMCs) can be induced to proliferate and switch phenotype. Such plasticity underlies blood vessel homeostasis and contributes to vascular disease development. Oligoclonal VSMC contribution is a hallmark of end-stage vascular disease. Here we aim to understand cellular mechanisms underpinning generation of this VSMC oligoclonality.We investigate the dynamics of VSMC clone formation using confocal microscopy and single cell transcriptomics in VSMC-lineage-traced animal models. We find that activation of medial VSMC proliferation occurs at low frequency after vascular injury and that only a subset of expanding clones migrate, which together drives formation of oligoclonal neointimal lesions. VSMC contribution in small atherosclerotic lesions is typically from one or two clones, similar to observations in mature lesions. Low frequency (<0.1%) of clonal VSMC proliferation is also observed in vitro. Single-cell RNA-sequencing revealed progressive cell state changes across a contiguous VSMC population at onset of injury-induced proliferation. Proliferating VSMCs mapped selectively to one of two distinct trajectories and were associated with cells showing extensive phenotypic switching. A proliferation-associated transitory state shared pronounced similarities with atypical SCA1+ VSMCs from uninjured mouse arteries and VSMCs in healthy human aorta. We show functionally that clonal expansion of SCA1+ VSMCs from healthy arteries occurs at higher rate and frequency compared to SCA1- cells.Our data suggest that activation of proliferation at low frequency is a general, cell-intrinsic feature of VSMCs. We show that rare VSMCs in healthy arteries display VSMC phenotypic switching akin to that observed in pathological vessel remodelling and that this is a conserved feature of mouse and human healthy arteries. The increased proliferation of modulated VSMCs from healthy arteries suggests that these cells respond more readily to disease-inducing cues and could drive oligoclonal VSMC expansion.
Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury
Proceedings of the National Academy of Sciences of the United States of America
Gerhardt, LMS;Liu, J;Koppitch, K;Cippà, PE;McMahon, AP;
PMID: 34183416 | DOI: 10.1073/pnas.2026684118
Acute kidney injury (AKI), commonly caused by ischemia, sepsis, or nephrotoxic insult, is associated with increased mortality and a heightened risk of chronic kidney disease (CKD). AKI results in the dysfunction or death of proximal tubule cells (PTCs), triggering a poorly understood autologous cellular repair program. Defective repair associates with a long-term transition to CKD. We performed a mild-to-moderate ischemia-reperfusion injury (IRI) to model injury responses reflective of kidney injury in a variety of clinical settings, including kidney transplant surgery. Single-nucleus RNA sequencing of genetically labeled injured PTCs at 7-d ("early") and 28-d ("late") time points post-IRI identified specific gene and pathway activity in the injury-repair transition. In particular, we identified Vcam1 +/Ccl2 + PTCs at a late injury stage distinguished by marked activation of NF-κB-, TNF-, and AP-1-signaling pathways. This population of PTCs showed features of a senescence-associated secretory phenotype but did not exhibit G2/M cell cycle arrest, distinct from other reports of maladaptive PTCs following kidney injury. Fate-mapping experiments identified spatially and temporally distinct origins for these cells. At the cortico-medullary boundary (CMB), where injury initiates, the majority of Vcam1 +/Ccl2 + PTCs arose from early replicating PTCs. In contrast, in cortical regions, only a subset of Vcam1 +/Ccl2 + PTCs could be traced to early repairing cells, suggesting late-arising sites of secondary PTC injury. Together, these data indicate even moderate IRI is associated with a lasting injury, which spreads from the CMB to cortical regions. Remaining failed-repair PTCs are likely triggers for chronic disease progression.
Yu, T;Kuang, H;Wu, X;Huang, Y;Wang, J;Wen, Z;
PMID: 37327343 | DOI: 10.1126/sciadv.adf9790
Microglia are brain-resident macrophages capable of long-term maintenance through self-renewal. Yet the mechanism governing the turnover and lifespan of microglia remains unknown. In zebrafish, microglia arise from two sources, rostral blood island (RBI) and aorta-gonad-mesonephros (AGM). The RBI-derived microglia are born early but have a short lifespan and diminish in adulthood, while the AGM-derived microglia emerge later and are capable of long-term maintenance in adulthood. Here, we show that the attenuation of RBI microglia is due to their less competitiveness for neuron-derived interleukin-34 (Il34) caused by age-dependent decline of colony-stimulating factor-1 receptor a (csf1ra). Alterations of Il34/Csf1ra levels and removal of AGM microglia revamp the proportion and lifespan of RBI microglia. The csf1ra/CSF1R expression in zebrafish AGM-derived microglia and murine adult microglia also undergo age-dependent decline, leading to the elimination of aged microglia. Our study reveals cell competition as a general mechanism controlling the turnover and lifespan of microglia.
Tran, M; Yoon, S ;Teoh, M; Andersen, S; Lam, PY; Purdue, BW; Raghubar, A; Hanson, SJ; Devitt, K; Jones, K; Walters, S; Monkman, J; Kulasinghe, A; Tuong, ZK; Soyer, HP; Frazer, IH; Nguyen, Q
Nat Commun. 2018 Oct 30;9(1):4435.
Nomura S, Satoh M, Fujita T, Higo T, Sumida T, Ko T, Yamaguchi T, Tobita T, Naito AT, Ito M, Fujita K, Harada M, Toko H, Kobayashi Y, Ito K, Takimoto E, Akazawa H, Morita H, Aburatani H, Komuro I.
PMID: 30375404 | DOI: 10.1038/s41467-018-06639-7
Pressure overload induces a transition from cardiac hypertrophy to heart failure, but its underlying mechanisms remain elusive. Here we reconstruct a trajectory of cardiomyocyte remodeling and clarify distinct cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure, by integrating single-cardiomyocyte transcriptome with cell morphology, epigenomic state and heart function. During early hypertrophy, cardiomyocytes activate mitochondrial translation/metabolism genes, whose expression is correlated with cell size and linked to ERK1/2 and NRF1/2 transcriptional networks. Persistent overload leads to a bifurcation into adaptive and failing cardiomyocytes, and p53 signaling is specifically activated in late hypertrophy. Cardiomyocyte-specific p53 deletion shows that cardiomyocyte remodeling is initiated by p53-independent mitochondrial activation and morphological hypertrophy, followed by p53-dependent mitochondrial inhibition, morphological elongation, and heart failure gene program activation. Human single-cardiomyocyte analysis validates the conservation of the pathogenic transcriptional signatures. Collectively, cardiomyocyte identity is encoded in transcriptional programs that orchestrate morphological and functional phenotypes.
Crouch, EE;Bhaduri, A;Andrews, MG;Cebrian-Silla, A;Diafos, LN;Birrueta, JO;Wedderburn-Pugh, K;Valenzuela, EJ;Bennett, NK;Eze, UC;Sandoval-Espinosa, C;Chen, J;Mora, C;Ross, JM;Howard, CE;Gonzalez-Granero, S;Lozano, JF;Vento, M;Haeussler, M;Paredes, MF;Nakamura, K;Garcia-Verdugo, JM;Alvarez-Buylla, A;Kriegstein, AR;Huang, EJ;
PMID: 36179668 | DOI: 10.1016/j.cell.2022.09.004
Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.
Nature. 2018 Nov;563(7729):72-78.
Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, Goldy J, Garren E, Economo MN, Viswanathan S, Penn O, Bakken T, Menon V, Miller J, Fong O, Hirokawa KE, Lathia K, Rimorin C, Tieu M, Larsen R, Casper T, Barkan E, Kroll M, Parry S, Shapovalova NV, Hirschstein D, Pendergraft J, Sullivan HA, Kim TK, Szafer A, Dee N, Groblewski P, Wickersham I, Cetin A, Harris JA, Levi BP, Sunkin SM, Madisen L, Daigle TL, Looger L, Bernard A, Phillips J, Lein E, Hawrylycz M, Svoboda K, Jones AR, Koch C, Zeng H.
PMID: 30382198 | DOI: 10.1038/s41586-018-0654-5
The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (gamma-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.