Mora-D�az J, Pi�eyro P, Shen H, Schwartz K, Vannucci F2, Li G, Arruda B, Gim�nez-Lirola L
PMID: 32079070 | DOI: 10.3390/v12020219
Porcine circovirus 3 (PCV3) has been identified as a putative swine pathogen with a subset of infections resulting in stillborn and mummified fetuses, encephalitis and myocarditis in perinatal, and periarteritis in growing pigs. Three PCV3 isolates were isolated from weak-born piglets or elevated stillborn and mummified fetuses. Full-length genome sequences from different passages and isolates (PCV3a1 ISU27734, PCV3a2 ISU58312, PCV3c ISU44806) were determined using metagenomics sequencing. Virus production in cell culture was confirmed by qPCR, IFA, and in situ hybridization. In vivo replication of PCV3 was also demonstrated in CD/CD pigs (n = 8) under experimental conditions. Viremia, first detected at 7 dpi, was detected in all pigs by 28 dpi. IgM antibody response was detected between 7-14 dpi in 5/8 PCV3-inoculated pigs but no IgG seroconversion was detected throughout the study. Pigs presented histological lesion consistent with multi systemic inflammation characterized by myocarditis and systemic perivasculitis. Viral replication was confirmed in all tissues by in situ hybridization. Clinically, all animals were unremarkable throughout the study. Although the clinical relevance of PCV3 remains under debate, this is the first isolation of PCV3 from perinatal and reproductive cases of PCV3-associated disease and in vivo characterization of PCV3 infection in a CD/CD pig model
Histological Lesions and Replication Sites of PCV3 in Naturally Infected Pigs
Animals : an open access journal from MDPI
De Conti, ER;Resende, TP;Marshall-Lund, L;Rovira, A;Vannucci, FA;
PMID: 34073660 | DOI: 10.3390/ani11061520
Porcine circovirus type 3 (PCV3) has been recently described as a potential cause of abortions and systemic vasculitis in pigs. Although the virus has been detected by real-time PCR in several porcine tissues from countries worldwide, PCV3-associated diseases have not been satisfactorily clarified. The objective of this study was to investigate the association between the presence of PCV3 mRNA detected by in situ hybridization (ISH) within histological lesions and PCV3 DNA detected by real-time PCR in naturally infected pigs. A total of 25 PCV3 PCR-positive cases were analyzed. Formalin-fixed tissues from these cases were evaluated for histologic lesions and for ISH-RNA positive signals for PCV3. The most frequent tissue type with histopathologic lesions was heart, 76.2%, with lymphoplasmacytic myocarditis and epicarditis as the most frequent lesions observed. Lymphoplasmacytic interstitial pneumonia was also a frequent finding, 47.6%. There were also lesions in kidney, liver, spleen and lymph nodes. PCV3-ISH-RNA positive signals were mostly observed in association with lymphoplasmacytic inflammatory infiltrate in various tissues, including arteries. Based on our results, the minimum set of specimens to be submitted for histopathology and mRNA in situ hybridization to confirm or exclude a diagnosis of PCV3 are heart, lung and lymphoid tissues (i.e., spleen and lymph nodes), especially for differential diagnosis related with PCV2-associated diseases.
Kidney international reports
Xu, K;Shang, N;Levitman, A;Corker, A;Kudose, S;Yaeh, A;Neupane, U;Stevens, J;Sampogna, R;Mills, AM;D'Agati, V;Mohan, S;Kiryluk, K;Barasch, J;
PMID: 34642645 | DOI: 10.1016/j.ekir.2021.09.005
Loss of kidney function is a common feature of COVID-19 infection, but serum creatinine (SCr) is not a sensitive or specific marker of kidney injury. We tested whether molecular biomarkers of tubular injury measured at hospital admission were associated with AKI in those with COVID-19 infection.This is a prospective cohort observational study consisting of 444 consecutive SARS-CoV-2 patients enrolled in the Columbia University Emergency Department at the peak of New York's pandemic (March-April 2020). Urine and blood were collected simultaneously at hospital admission (median time: day 0, IQR 0-2 days) and urine biomarkers analyzed by ELISA and by a novel dipstick. Kidney biopsies were probed for biomarker RNA and for histopathologic acute tubular injury (ATI) scores.Admission uNGAL was associated with AKI diagnosis (267±301 vs. 96±139 ng/mL, P < 0.0001) and staging; uNGAL levels >150ng/mL demonstrated 80% specificity and 75% sensitivity to diagnose AKI-stage 2-3. Admission uNGAL quantitatively associated with prolonged AKI, dialysis, shock, prolonged hospitalization, and in-hospital death, even when admission SCr was not elevated. The risk of dialysis increased almost 4-fold per standard deviation of uNGAL independently of baseline SCr, co-morbidities, and proteinuria [OR(95%CI): 3.59 (1.83-7.45), P < 0.001]. In COVID-19 kidneys, NGAL mRNA expression broadened in parallel with severe histopathological injury (ATI). Conversely, low uNGAL levels at admission ruled out stage 2-3 AKI (NPV 0.95, 95%CI: 0.92-0.97) and the need for dialysis (NPV: 0.98, 95%CI: 0.96-0.99)). While proteinuria and uKIM-1 implicated tubular injury, neither were diagnostic of AKI stages.In COVID-19 patients, uNGAL quantitatively associated with histopathological injury (ATI), the loss of kidney function (AKI), and the severity of patient outcomes.
Novel Morbillivirus as Putative Cause of Fetal Death and Encephalitis among Swine
Emerging infectious diseases
Arruda, B;Shen, H;Zheng, Y;Li, G;
PMID: 34152961 | DOI: 10.3201/eid2707.203971
Morbilliviruses are highly contagious pathogens. The Morbillivirus genus includes measles virus, canine distemper virus (CDV), phocine distemper virus (PDV), peste des petits ruminants virus, rinderpest virus, and feline morbillivirus. We detected a novel porcine morbillivirus (PoMV) as a putative cause of fetal death, encephalitis, and placentitis among swine by using histopathology, metagenomic sequencing, and in situ hybridization. Phylogenetic analyses showed PoMV is most closely related to CDV (62.9% nt identities) and PDV (62.8% nt identities). We observed intranuclear inclusions in neurons and glial cells of swine fetuses with encephalitis. Cellular tropism is similar to other morbilliviruses, and PoMV viral RNA was detected in neurons, respiratory epithelium, and lymphocytes. This study provides fundamental knowledge concerning the pathology, genome composition, transmission, and cellular tropism of a novel pathogen within the genus Morbillivirus and opens the door to a new, applicable disease model to drive research forward.