ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
NPJ Parkinson's disease
2023 Apr 26
Buhidma, Y;Hobbs, C;Malcangio, M;Duty, S;
PMID: 37100804 | DOI: 10.1038/s41531-023-00510-3
Brain Struct Funct. 2015 Jul 10.
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB.
PMID: 26159773
European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology
2023 May 06
Ngoc, KH;Kecskés, A;Kepe, E;Nabi, L;Keeble, J;Borbély, É;Helyes, Z;
PMID: 37156112 | DOI: 10.1016/j.euroneuro.2023.04.017
Endocrinology
2019 Feb 07
Krajewski-Hall SJ, Miranda Dos Santos F, McMullen NT, Blackmore EM, Rance NE.
PMID: 30753503 | DOI: 10.1210/en.2018-00934
We have proposed that KNDy (kisspeptin/neurokinin B/dynorphin) neurons contribute to hot flushes via projections to neurokinin 3 receptor (NK3R) expressing neurons in the median preoptic nucleus (MnPO). To characterize the thermoregulatory role of MnPO NK3R neurons in female mice, we ablated these neurons using injections of saporin toxin conjugated to a selective NK3R agonist. Loss of MnPO NK3R neurons increased core temperature (TCORE) during the light phase, with frequency distributions indicating a regulated shift in the balance point. The rise in TCORE in ablated mice occurred despite changes in ambient temperature (TAMBIENT) and regardless of estrogen status. We next determined if an acute increase in TAMBIENT or higher TCORE would induce Fos in preoptic EGFP-immunoreactive neurons in Tacr3-EGFP mice. Fos-activation was increased in the MnPO, but there was no induction of Fos in NK3R (EGFP-immunoreactive) neurons. Thus, MnPO NK3R neurons are not activated by warm thermosensors in the skin or viscera and are not warm-sensitive neurons. Finally, RNAscope was used to determine if Tacr3 (NK3R) mRNA was co-expressed with VGLUT2 or VGAT mRNA, markers of glutamatergic or GABAergic neurotransmission, respectively. Interestingly, 94% of NK3R neurons in the MnPO were glutamatergic, whereas in the adjacent MPA, 97% of NK3R neurons were GABAergic. Thus, NK3R neurons in the MnPO are glutamatergic and play a role in reducing TCORE, but they are not activated by warm thermal stimuli (internal or external). These studies suggest that KNDy neurons modulate thermosensory pathways for heat-defense indirectly, via a subpopulation of glutamatergic MnPO neurons that express NK3R.
Biomolecules
2022 Aug 24
Cooper, S;Souza, L;Worker, C;Gayban, A;Buller, S;Satou, R;Feng Earley, Y;
| DOI: 10.3390/biom12091169
Anat Rec (Hoboken).
2018 Oct 12
Hackett TA
PMID: 30315630 | DOI: 10.1002/ar.23907
In the brain, purines such as ATP and adenosine can function as neurotransmitters and co-transmitters, or serve as signals in neuron-glial interactions. In thalamocortical (TC) projections to sensory cortex, adenosine functions as a negative regulator of glutamate release via activation of the presynaptic adenosine A1 receptor (A1 R). In the auditory forebrain, restriction of A1 R-adenosine signaling in medial geniculate (MG) neurons is sufficient to extend LTP, LTD, and tonotopic map plasticity in adult mice for months beyond the critical period. Interfering with adenosine signaling in primary auditory cortex (A1) does not contribute to these forms of plasticity, suggesting regional differences in the roles of A1 R-mediated adenosine signaling in the forebrain. To advance understanding of the circuitry, in situ hybridization was used to localize neuronal and glial cell types in the auditory forebrain that express A1 R transcripts (Adora1), based on co-expression with cell-specific markers for neuronal and glial subtypes. In A1, Adora1 transcripts were concentrated in L3/4 and L6 of glutamatergic neurons. Subpopulations of GABAergic neurons, astrocytes, oligodendrocytes, and microglia expressed lower levels of Adora1. In MG, Adora1 was expressed by glutamatergic neurons in all divisions, and subpopulations of all glial classes. The collective findings imply that A1 R-mediated signaling broadly extends to all subdivisions of auditory cortex and MG. Selective expression by neuronal and glial subpopulations suggests that experimental manipulations of A1 R-adenosine signaling could impact several cell types, depending on their location. Strategies to target Adora1 in specific cell types can be developed from the data generated here.
Front Neuroanat
2019 Mar 08
Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J and Gundlach AL
PMID: 30906254 | DOI: 10.3389/fnana.2019.00030
Sci Rep.
2017 Sep 26
Han X, He Y, Bi GH, Zhang HY, Song R, Liu QR, Egan JM, Gardner EL, Li J, Xi ZX.
PMID: 28951549 | DOI: 10.1038/s41598-017-12399-z
Cannabis can be rewarding or aversive. Cannabis reward is believed to be mediated by activation of cannabinoid CB1 receptors (CB1Rs) on GABAergic neurons that disinhibit dopaminergic neurons in the ventral tegmental area (VTA). However, little is known about the mechanisms underlying cannabis aversion in rodents. In the present study, CB1Rs are found not only on VTA GABAergic neurons, but also on VTA glutamatergic neurons that express vesicular glutamate transporter 2 (VgluT2). We then used Cre-Loxp transgenic technology to selectively delete CB1Rs in VgluT2-expressing glutamatergic neurons (VgluT2-CB1 -/-) and Cre-dependent viral vector to express light-sensitive channelrhodopsin-2 into VTA glutamatergic neurons. We found that photoactivation of VTA glutamatergic neurons produced robust intracranial self-stimulation (ICSS) behavior, which was dose-dependently blocked by DA receptor antagonists, but enhanced by cocaine. In contrast, Δ9-tetrahydrocannabinol (Δ9-THC), the major psychoactive component of cannabis, produced dose-dependent conditioned place aversion and a reduction in the above optical ICSS in VgluT2-cre control mice, but not in VgluT2-CB1 -/- mice. These findings suggest that activation of CB1Rs in VgluT2-expressing glutamate neurons produces aversive effects that might explain why cannabinoid is not rewarding in rodents and might also account for individual differences in the hedonic effects of cannabis in humans.
Neuropharmacology
2021 Mar 28
Zhang, HY;Shen, H;Gao, M;Ma, Z;Hempel, B;Bi, GH;Gardner, EL;Wu, J;Xi, ZX;
PMID: 33789118 | DOI: 10.1016/j.neuropharm.2021.108538
Oncogenesis
2018 Feb 02
Mao F, Holmlund C, Faraz M, Wang W, Bergenheim T, Kvarnbrink S, Johansson M, Henriksson R, Hedman H.
PMID: - | DOI: 10.1038/s41389-017-0012-8
Recently, a genome-wide association study showed that a single nucleotide polymorphism (SNP) —rs11706832—in intron 2 of the human LRIG1 (Leucine-rich repeats and immunoglobulin-like domains 1) gene is associated with susceptibility to glioma. However, the mechanism by which rs11706832 affects glioma risk remains unknown; additionally, it is unknown whether the expression levels of LRIG1 are a relevant determinant of gliomagenesis. Here, we investigated the role of Lrig1 in platelet-derived growth factor (PDGF)-induced experimental glioma in mice by introducing mono-allelic and bi-allelic deletions of Lrig1followed by inducing gliomagenesis via intracranial retroviral transduction of PDGFB in neural progenitor cells. Lrig1 was expressed in PDGFB-induced gliomas in wild-type mice as assessed using in situ hybridization. Intriguingly, Lrig1-heterozygous mice developed higher grade gliomas than did wild-type mice (grade IV vs. grade II/III, p = 0.002). Reciprocally, the ectopic expression of LRIG1 in the TB107 high-grade human glioma (glioblastoma, grade IV) cell line decreased the invasion of orthotopic tumors in immunocompromised mice in vivo and reduced cell migration in vitro. Concomitantly, the activity of the receptor tyrosine kinase MET was downregulated, which partially explained the reduction in cell migration. In summary, Lrig1 is a haploinsufficient suppressor of PDGFB-driven glioma, possibly in part via negative regulation of MET-driven cell migration and invasion. Thus, for the first time, changes in physiological Lrig1 expression have been linked to gliomagenesis, whereby the SNP rs11706832 may affect glioma risk by regulating LRIG1 expression.
Frontiers in Neural Circuits
2021 May 19
Eskenazi, D;Malave, L;Mingote, S;Yetnikoff, L;Ztaou, S;Velicu, V;Rayport, S;Chuhma, N;
| DOI: 10.3389/fncir.2021.665386
eNeuro
2017 Mar 17
Samineni VK, Grajales-Reyes JG, Copits BA, O’Brien DE, Trigg SL, Gomez AM, Bruchas MR, Gereau RW.
PMID: - | DOI: 10.1523/ENEURO.0129-16.2017
The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pro-nociceptive effects on pain transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the PAG has prevented direct testing of this hypothesis. Here we demonstrate the different contributions of genetically-defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysiological studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception.
Significance Statement The PAG is a midbrain region critical for the modulation of pain. However, the roles played by the distinct cell types within the PAG in nociceptive processing are poorly understood. This work addresses the divergent roles of glutamatergic and GABAergic PAG neuronal subpopulations in nociceptive processing. We demonstrate that activation of glutamatergic neurons or inhibition of GABAergic neurons suppresses nociception. Whereas inhibition of glutamatergic neuronal activity or activation of GABAergic neuronal activity potentiates nociception. This report identifies distinct roles for these neuronal populations in modulating nociceptive processing.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com