Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (105)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • (-) Remove TH filter TH (63)
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • (-) Remove Chat filter Chat (37)
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (35) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (32) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (9) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.0 Assay (3) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope HiPlex v2 assay (3) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • BaseScope Duplex Assay (1) Apply BaseScope Duplex Assay filter
  • RNAscope HiPlex12 Reagents Kit (1) Apply RNAscope HiPlex12 Reagents Kit filter
  • RNAscope Multiplex fluorescent reagent kit v2 (1) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • TBD (1) Apply TBD filter

Research area

  • Neuroscience (89) Apply Neuroscience filter
  • Cancer (4) Apply Cancer filter
  • Development (4) Apply Development filter
  • Stem Cells (3) Apply Stem Cells filter
  • Addiction (2) Apply Addiction filter
  • Aging (2) Apply Aging filter
  • Metabolism (2) Apply Metabolism filter
  • Nueroscience (2) Apply Nueroscience filter
  • Parkinson's Disease (2) Apply Parkinson's Disease filter
  • Stress (2) Apply Stress filter
  • Alheimer's Disease (1) Apply Alheimer's Disease filter
  • Allergy Response (1) Apply Allergy Response filter
  • ALS (1) Apply ALS filter
  • Alzheimers (1) Apply Alzheimers filter
  • Aversive Leanring (1) Apply Aversive Leanring filter
  • Behavoir (1) Apply Behavoir filter
  • Cardiovascular Disease (1) Apply Cardiovascular Disease filter
  • CGT (1) Apply CGT filter
  • Coping Behavior (1) Apply Coping Behavior filter
  • DYT1dystonia (1) Apply DYT1dystonia filter
  • Exercise (1) Apply Exercise filter
  • Grooming behavior dysfunction (1) Apply Grooming behavior dysfunction filter
  • Huntington's Disease (1) Apply Huntington's Disease filter
  • Injury (1) Apply Injury filter
  • Lung (1) Apply Lung filter
  • Motor Behaviors (1) Apply Motor Behaviors filter
  • Motor Function (1) Apply Motor Function filter
  • Neurobiology (1) Apply Neurobiology filter
  • OCD (1) Apply OCD filter
  • Ophthalmology (1) Apply Ophthalmology filter
  • Organoid (1) Apply Organoid filter
  • Other (1) Apply Other filter
  • Other: Behavorial (1) Apply Other: Behavorial filter
  • Other: Cell Biology (1) Apply Other: Cell Biology filter
  • Other: Methods (1) Apply Other: Methods filter
  • Oxygen chemoreceptor (1) Apply Oxygen chemoreceptor filter
  • Paralysis (1) Apply Paralysis filter
  • Photoperiod (1) Apply Photoperiod filter
  • Psychiatric Disorders (1) Apply Psychiatric Disorders filter
  • Regeneration (1) Apply Regeneration filter
  • Rewards cues (1) Apply Rewards cues filter
  • Sleep (1) Apply Sleep filter
  • somatosensory function (1) Apply somatosensory function filter
  • Spinal Cord injury (1) Apply Spinal Cord injury filter
  • Stem cell (1) Apply Stem cell filter
  • Sympathic Nervous System (1) Apply Sympathic Nervous System filter
  • Transcriptomics (1) Apply Transcriptomics filter

Category

  • Publications (105) Apply Publications filter
Touch neurons underlying dopaminergic pleasurable touch and sexual receptivity

Cell

2023 Jan 13

Elias, LJ;Succi, IK;Schaffler, MD;Foster, W;Gradwell, MA;Bohic, M;Fushiki, A;Upadhyay, A;Ejoh, LL;Schwark, R;Frazer, R;Bistis, B;Burke, JE;Saltz, V;Boyce, JE;Jhumka, A;Costa, RM;Abraira, VE;Abdus-Saboor, I;
PMID: 36693373 | DOI: 10.1016/j.cell.2022.12.034

Pleasurable touch is paramount during social behavior, including sexual encounters. However, the identity and precise role of sensory neurons that transduce sexual touch remain unknown. A population of sensory neurons labeled by developmental expression of the G protein-coupled receptor Mrgprb4 detects mechanical stimulation in mice. Here, we study the social relevance of Mrgprb4-lineage neurons and reveal that these neurons are required for sexual receptivity and sufficient to induce dopamine release in the brain. Even in social isolation, optogenetic stimulation of Mrgprb4-lineage neurons through the back skin is sufficient to induce a conditioned place preference and a striking dorsiflexion resembling the lordotic copulatory posture. In the absence of Mrgprb4-lineage neurons, female mice no longer find male mounts rewarding: sexual receptivity is supplanted by aggression and a coincident decline in dopamine release in the nucleus accumbens. Together, these findings establish that Mrgprb4-lineage neurons initiate a skin-to-brain circuit encoding the rewarding quality of social touch.
Astrocyte-neuron crosstalk through Hedgehog signaling mediates cortical synapse development

Cell reports

2022 Feb 22

Xie, Y;Kuan, AT;Wang, W;Herbert, ZT;Mosto, O;Olukoya, O;Adam, M;Vu, S;Kim, M;Tran, D;Gómez, N;Charpentier, C;Sorour, I;Lacey, TE;Tolstorukov, MY;Sabatini, BL;Lee, WA;Harwell, CC;
PMID: 35196485 | DOI: 10.1016/j.celrep.2022.110416

Neuron-glia interactions play a critical role in the regulation of synapse formation and circuit assembly. Here we demonstrate that canonical Sonic hedgehog (Shh) pathway signaling in cortical astrocytes acts to coordinate layer-specific synaptic connectivity. We show that the Shh receptor Ptch1 is expressed by cortical astrocytes during development and that Shh signaling is necessary and sufficient to promote the expression of genes involved in regulating synaptic development and layer-enriched astrocyte molecular identity. Loss of Shh in layer V neurons reduces astrocyte complexity and coverage by astrocytic processes in tripartite synapses; conversely, cell-autonomous activation of Shh signaling in astrocytes promotes cortical excitatory synapse formation. Furthermore, Shh-dependent genes Lrig1 and Sparc distinctively contribute to astrocyte morphology and synapse formation. Together, these results suggest that Shh secreted from deep-layer cortical neurons acts to specialize the molecular and functional features of astrocytes during development to shape circuit assembly and function.
Breathing regulation and blood gas homeostasis after near complete lesions of the retrotrapezoid nucleus in adult rats

J Physiol.

2018 Apr 18

Souza GM, Kanbar R, Stornetta DS, Abbott SB, Stornetta RL, Guyenet PG.
PMID: 29667182 | DOI: 10.1113/JP275866

Abstract

The retrotrapezoid nucleus (RTN) is one of several CNS nuclei that contribute, in various capacities (e.g. CO2 detection, neuronal modulation) to the central respiratory chemoreflex (CRC). Here we test how important the RTN is to PCO2 homeostasis and breathing during sleep or wake. RTN Nmb positive neurons were killed with targeted microinjections of substance-P-saporin conjugate in adult rats. Under normoxia, rats with large RTN lesions (92 ± 4 % cell loss) had normal blood pressure (BP) and arterial pH but were hypoxic (-8 mmHg PaO2 ) and hypercapnic (+10 mmHg PaCO2 ). In resting conditions, minute-volume (VE ) was normal but breathing frequency (fR ) was elevated and tidal volume (VT ) reduced. Resting O2 consumption and CO2 production were normal. The hypercapnic ventilatory reflex in 65% FiO2 had an inverse exponential relationship with the number of surviving RTN neurons and was decreased by up to 92%. The hypoxic ventilatory reflex (HVR; FiO2 21-10%) persisted after RTN lesions, hypoxia-induced sighing was normal and hypoxia-induced hypotension reduced. In rats with RTN lesions, breathing was lowest during slow-wave sleep (SWS), especially under hyperoxia, but apneas and sleep-disordered breathing were not observed. In conclusion, near complete RTN destruction in rats virtually eliminates the CRC but HVR persists and sighing and the state-dependence of breathing are unchanged. Under normoxia, RTN lesions cause no change in VE but alveolar ventilation is reduced by at least 21%, probably because of increased physiological dead volume. RTN lesions do not cause sleep apnea during SWS, even under hyperoxia.

KEY POINTS SUMMARY:

Background: the retrotrapezoid nucleus (RTN) drives breathing proportionally to brain PCO2 but its role during various states of vigilance needed clarification. New result: Under normoxia, RTN lesions increase the arterial PCO2 set-point, lower the PO2set-point and reduce alveolar ventilation relative to CO2 production. Tidal volume is reduced and breathing frequency increased to a comparable degree during wake, slow-wave sleep and REM sleep. RTN lesions do not produce apneas or disordered breathing during sleep. New result: RTN lesions in rats virtually eliminate the central respiratory chemoreflex (CRC) while preserving the cardiorespiratory responses to hypoxia; the relationship between CRC and number of surviving RTN Nmb neurons is an inverse exponential.

CONCLUSIONS:

the CRC does not function without the RTN. In the quasi-complete absence of the RTN and CRC, alveolar ventilation is reduced despite an increased drive to breathe from the carotid bodies. 

Kappa Opioid Receptors Drive a Tonic Aversive Component of Chronic Pain.

J Neurosci.

2019 Mar 12

Liu SS, Pickens S, Burma NE, Ibarra-Lecue I, Yang H, Xue L, Cook C, Hakimian JK, Severino AL, Lueptow L, Komarek K, Taylor AMW, Olmstead MC, Carroll FI, Bass CE, Andrews AM, Walwyn W, Trang T, Evans CJ, Leslie F, Cahill CM.
PMID: 30862664 | DOI: 10.1523/JNEUROSCI.0274-19.2019

Pain is a multidimensional experience and negative affect, or how much the pain is "bothersome", significantly impacts the sufferers' quality of life. It is well established that the kappa opioid system contributes to depressive and dysphoric states, but whether this system contributes to the negative affect precipitated by the occurrence of chronic pain remains tenuous. Using a model of persistent pain, we show by quantitative RT-PCR, florescence in situ hybridization, western blotting and GTPgS autoradiography an upregulation of expression and the function of kappa opioid receptors (KORs) and its endogenous ligand dynorphin in the mesolimbic circuitry in animals with chronic pain compared to surgical controls. Using in vivo microdialysis and microinjection of drugs into the mesolimbic dopamine system, we demonstrate that inhibiting KORs reinstates evoked dopamine release and reward related behaviors in chronic pain animals. Chronic pain enhanced KOR agonist-induced place aversion in a sex-dependent manner. Using various place preference paradigms, we show that activation of KORs drives pain aversive states in male but not female mice. However, KOR antagonist treatment was effective in alleviating anxiogenic and depressive affective-like behaviors in both sexes. Finally, ablation of KORs from dopamine neurons using AAV-TH-cre in KORloxP mice prevented pain-induced aversive states as measured by place aversion assays. Our results strongly support the use of KOR antagonists as therapeutic adjuvants to alleviate the emotional, tonic-aversive component of chronic pain, which is argued to be the most significant component of the pain experience that impacts patients' quality of life.Significance StatementWe show that KORs are sufficient to drive the tonic-aversive component of chronic pain - the emotional component of pain that is argued to significantly impact a patient's quality of life. The impact of our study is broadly relevant to affective disorders associated with disruption of reward circuitry and thus likely contributes to many of the devastating sequelae of chronic pain, including the poor response to treatment of many patients, debilitating affective disorders (other disorders including anxiety and depression that demonstrate high co-morbidity with chronic pain) and substance abuse. Indeed, co-existing psychopathology increases pain intensity, pain-related disability and effectiveness of treatments (Jamison and Edwards, 2013).

Spinophilin limits metabotropic glutamate receptor 5 scaffolding to the postsynaptic density and cell type-specifically mediates excessive grooming

Biological Psychiatry

2022 Dec 01

Morris, C;Watkins, D;Shah, N;Pennington, T;Hens, B;Qi, G;Doud, E;Mosley, A;Atwood, B;Baucum, A;
| DOI: 10.1016/j.biopsych.2022.12.008

Background Grooming dysfunction is a hallmark of the obsessive-compulsive spectrum disorder, trichotillomania. Numerous preclinical studies have utilized SAPAP3 deficient mice for understanding the neurobiology of repetitive grooming, suggesting excessive grooming is caused by increased metabotropic glutamate receptor 5 (mGluR5) activity in striatal direct- and indirect pathway medium spiny neurons (dMSNs and iMSNs, respectively). However, MSN subtype-specific signaling mechanisms that mediate mGluR5-dependent adaptations underlying excessive grooming are not fully understood. Here, we investigate the MSN subtype-specific roles of the striatal signaling hub protein, spinophilin, in mediating repetitive motor dysfunction associated with mGluR5 function. Methods Quantitative proteomics and immunoblotting were utilized to identify how spinophilin impacts mGluR5 phosphorylation and protein interaction changes. Plasticity and repetitive motor dysfunction associated with mGluR5 action was measured using our novel conditional spinophilin mouse model that had spinophilin knocked out from striatal dMSNs or/and iMSNs. Results Loss of spinophilin only in iMSNs decreased performance of a novel motor repertoire, but loss of spinophilin in either MSN subtype abrogated striatal plasticity associated with mGluR5 function and prevented excessive grooming caused by SAPAP3 knockout mice or treatment with the mGluR5-specific positive allosteric modulator (VU0360172) without impacting locomotion-relevant behavior. Biochemically, we determined the spinophilin-mGluR5 interaction correlates with grooming behavior and loss of spinophilin shifts mGluR5 interactions from lipid-raft associated proteins toward postsynaptic density (PSD) proteins implicated in psychiatric disorders. Conclusions These results identify spinophilin as a novel striatal signaling hub molecule in MSNs that cell subtype-specifically mediates behavioral, functional, and molecular adaptations associated with repetitive motor dysfunction in psychiatric disorders.
Tools for analysis and conditional deletion of subsets of sensory neurons

Wellcome Open Research

2021 Sep 30

Santana-Varela, S;Bogdanov, Y;Gossage, S;Okorokov, A;Li, S;de Clauser, L;Alves-Simoes, M;Sexton, J;Iseppon, F;Luiz, A;Zhao, J;Wood, J;Cox, J;
| DOI: 10.12688/wellcomeopenres.17090.1

Background: Somatosensation depends on primary sensory neurons of the trigeminal and dorsal root ganglia (DRG). Transcriptional profiling of mouse DRG sensory neurons has defined at least 18 distinct neuronal cell types. Using an advillin promoter, we have generated a transgenic mouse line that only expresses diphtheria toxin A (DTA) in sensory neurons in the presence of Cre recombinase. This has allowed us to ablate specific neuronal subsets within the DRG using a range of established and novel Cre lines that encompass all sets of sensory neurons.    Methods: A floxed-tdTomato-stop-DTA bacterial artificial chromosome (BAC) transgenic reporter line (AdvDTA) under the control of the mouse advillin DRG promoter was generated. The line was first validated using a Nav1.8Cre and then crossed to CGRPCreER (Calca), ThCreERT2, Tmem45bCre, Tmem233Cre, Ntng1Cre and TrkBCreER (Ntrk2) lines. Pain behavioural assays included Hargreaves’, hot plate, Randall-Selitto, cold plantar, partial sciatic nerve ligation and formalin tests. Results: Motor activity, as assessed by the rotarod test, was normal for all lines tested. Noxious mechanosensation was significantly reduced when either Nav1.8 positive neurons or Tmem45b positive neurons were ablated whilst acute heat pain was unaffected. In contrast, noxious mechanosensation was normal following ablation of CGRP-positive neurons but acute heat pain thresholds were significantly elevated and a reduction in nocifensive responses was observed in the second phase of the formalin test. Ablation of TrkB-positive neurons led to significant deficits in mechanical hypersensitivity in the partial sciatic nerve ligation neuropathic pain model. Conclusions: Ablation of specific DRG neuronal subsets using the AdvDTA line will be a useful resource for further functional characterization of somatosensory processing, neuro-immune interactions and chronic pain disorders.
Dopamine release dynamics in the tuberoinfundibular dopamine system.

J Neurosci.

2019 Feb 19

Stagkourakis S, Dunevall J, Taleat Z, Ewing AG, Broberger C.
PMID: 30782976 | DOI: 10.1523/JNEUROSCI.2339-18.2019

The relationship between neuronal impulse activity and neurotransmitter release remains elusive. This issue is especially poorly understood in the neuroendocrine system, with its particular demands on periodically voluminous release of neurohormones at the interface of axon terminals and vasculature. A shortage of techniques with sufficient temporal resolution has hindered real-time monitoring of the secretion of the peptides that dominate among the neurohormones. The lactotropic axis provides an important exception in neurochemical identity, however, as pituitary prolactin secretion is primarily under monoaminergic control, via tuberoinfundibular dopamine (TIDA) neurons projecting to the median eminence (ME). Here, we combined optogenetic stimulation and fast-scan cyclic voltammetry to address dopamine release dynamics in the male mouse TIDA system. Imposing different discharge frequencies during brief (3 sec) stimulation of TIDA terminals in the ME revealed that dopamine output is maximal at 10 Hz, which was found to parallel the TIDA neuron action potential frequency distribution. Over more sustained stimulation periods (150 sec), maximal output occurred at 5 Hz. Application of the dopamine transporter blocker, methylphenidate, significantly increased dopamine levels in the ME, supporting a functional role of the transporter at the neurons' terminals. Lastly, TIDA neuron stimulation at the cell body yielded perisomatic release of dopamine, which may contribute to an ultra-fast negative feedback mechanism to constrain TIDA electrical activity. Together, these data shed light on how spiking patterns in the neuroendocrine system translate to vesicular release towards the pituitary and identify how dopamine dynamics are controlled in the TIDA system at different cellular compartments.SIGNIFICANCE STATEMENTA central question in neuroscience is the complex relationship between neuronal discharge activity and transmitter release. By combining optogenetic stimulation and voltammetry, we address this issue in dopamine neurons of the neuroendocrine system, which faces particular spatiotemporal demands on exocytotic release; large amounts of neurohormone need to be secreted into the portal capillaries with precise timing to adapt to physiological requirements. Our data show that release is maximal around the neurons' default firing frequency. We further provide support for functional dopamine transport at the neurovascular terminals, shedding light on a long-standing controversy about the existence of neuroendocrine transmitter reuptake. Finally, we show that dopamine release occurs also at the somatodendritic level, providing a substrate for an ultra-short autoregulatory feedback loop.

Neural mechanism of acute stress regulation by trace aminergic signalling in the lateral habenula in male mice

Nature communications

2023 Apr 27

Yang, SH;Yang, E;Lee, J;Kim, JY;Yoo, H;Park, HS;Jung, JT;Lee, D;Chun, S;Jo, YS;Pyeon, GH;Park, JY;Lee, HW;Kim, H;
PMID: 37105975 | DOI: 10.1038/s41467-023-38180-7

Stress management is necessary for vertebrate survival. Chronic stress drives depression by excitation of the lateral habenula (LHb), which silences dopaminergic neurons in the ventral tegmental area (VTA) via GABAergic neuronal projection from the rostromedial tegmental nucleus (RMTg). However, the effect of acute stress on this LHb-RMTg-VTA pathway is not clearly understood. Here, we used fluorescent in situ hybridisation and in vivo electrophysiology in mice to show that LHb aromatic L-amino acid decarboxylase-expressing neurons (D-neurons) are activated by acute stressors and suppress RMTg GABAergic neurons via trace aminergic signalling, thus activating VTA dopaminergic neurons. We show that the LHb regulates RMTg GABAergic neurons biphasically under acute stress. This study, carried out on male mice, has elucidated a molecular mechanism in the efferent LHb-RMTg-VTA pathway whereby trace aminergic signalling enables the brain to manage acute stress by preventing the hypoactivity of VTA dopaminergic neurons.
Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons

Nature communications

2022 Sep 26

Matson, KJE;Russ, DE;Kathe, C;Hua, I;Maric, D;Ding, Y;Krynitsky, J;Pursley, R;Sathyamurthy, A;Squair, JW;Levi, BP;Courtine, G;Levine, AJ;
PMID: 36163250 | DOI: 10.1038/s41467-022-33184-1

After spinal cord injury, tissue distal to the lesion contains undamaged cells that could support or augment recovery. Targeting these cells requires a clearer understanding of their injury responses and capacity for repair. Here, we use single nucleus RNA sequencing to profile how each cell type in the lumbar spinal cord changes after a thoracic injury in mice. We present an atlas of these dynamic responses across dozens of cell types in the acute, subacute, and chronically injured spinal cord. Using this resource, we find rare spinal neurons that express a signature of regeneration in response to injury, including a major population that represent spinocerebellar projection neurons. We characterize these cells anatomically and observed axonal sparing, outgrowth, and remodeling in the spinal cord and cerebellum. Together, this work provides a key resource for studying cellular responses to injury and uncovers the spontaneous plasticity of spinocerebellar neurons, uncovering a potential candidate for targeted therapy.
Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques

Sci Transl Med. 2018 Oct 31;10(465).

2018 Oct 31

Borel F, Gernoux G, Sun H, Stock R, Blackwood M, Brown RH Jr, Mueller C.
PMID: 30381409 | DOI: 10.1126/scitranslmed.aau6414

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease caused by degeneration of motor neurons leading to rapidly progressive paralysis. About 10% of cases are caused by gain-of-function mutations that are transmitted as dominant traits. A potential therapy for these cases is to suppress the expression of the mutant gene. Here, we investigated silencing of SOD1, a gene commonly mutated in familial ALS, using an adeno-associated virus (AAV) encoding an artificial microRNA (miRNA) that targeted SOD1 In a superoxide dismutase 1 (SOD1)-mediated mouse model of ALS, we have previously demonstrated that SOD1 silencing delayed disease onset, increased survival time, and reduced muscle loss and motor and respiratory impairments. Here, we describe the preclinical characterization of this approach in cynomolgus macaques (Macaca fascicularis) using an AAV serotype for delivery that has been shown to be safe in clinical trials. We optimized AAV delivery to the spinal cord by preimplantation of a catheter and placement of the subject with head down at 30 degrees during intrathecal infusion. We compared different promoters for the expression of artificial miRNAs directed against mutant SOD1 Results demonstrated efficient delivery and effective silencing of the SOD1 gene in motor neurons. These results support the notion that gene therapy with an artificial miRNA targeting SOD1 is safe and merits further development for the treatment of mutant SOD1-linked ALS.
Focused ultrasound delivery of a selective TrkA agonist rescues cholinergic function in a mouse model of Alzheimer's disease.

Sci Adv

2020 Jan 22

Xhima K, Markham-Coultes K, Nedev H, Heinen S, Saragovi HU, Hynynen K, Aubert I
PMID: 32010781 | DOI: 10.1126/sciadv.aax6646 Free PMC Article

The degeneration of cholinergic neurons is a prominent feature of Alzheimer's disease (AD). In animal models of injury and aging, nerve growth factor (NGF) enhances cholinergic cell survival and function, contributing to improved memory. In the presence of AD pathology, however, NGF-related therapeutics have yet to fulfill their regenerative potential. We propose that stimulating the TrkA receptor, without p75NTR activation, is key for therapeutic efficacy. Supporting this hypothesis, the selective TrkA agonist D3 rescued neurotrophin signaling in TgCRND8 mice, whereas NGF, interacting with both TrkA and p75NTR, did not. D3, delivered intravenously and noninvasively to the basal forebrain using MRI-guided focused ultrasound (MRIgFUS)-mediated blood-brain barrier (BBB) permeability activated TrkA-related signaling cascades and enhanced cholinergic neurotransmission. Recent clinical trials support the safety and feasibility of MRIgFUS BBB modulation in AD patients. Neuroprotective agents targeting TrkA, combined with MRIgFUS BBB modulation, represent a promising strategy to counter neurodegeneration in AD.
Cardiovascular baroreflex circuit moonlights in sleep control

Neuron

2022 Sep 23

Yao, Y;Barger, Z;Saffari Doost, M;Tso, CF;Darmohray, D;Silverman, D;Liu, D;Ma, C;Cetin, A;Yao, S;Zeng, H;Dan, Y;
PMID: 36170850 | DOI: 10.1016/j.neuron.2022.08.027

Sleep disturbances are strongly associated with cardiovascular diseases. Baroreflex, a basic cardiovascular regulation mechanism, is modulated by sleep-wake states. Here, we show that neurons at key stages of baroreflex pathways also promote sleep. Using activity-dependent genetic labeling, we tagged neurons in the nucleus of the solitary tract (NST) activated by blood pressure elevation and confirmed their barosensitivity with optrode recording and calcium imaging. Chemogenetic or optogenetic activation of these neurons promoted non-REM sleep in addition to decreasing blood pressure and heart rate. GABAergic neurons in the caudal ventrolateral medulla (CVLM)-a downstream target of the NST for vasomotor baroreflex-also promote non-REM sleep, partly by inhibiting the sympathoexcitatory and wake-promoting adrenergic neurons in the rostral ventrolateral medulla (RVLM). Cholinergic neurons in the nucleus ambiguous-a target of the NST for cardiac baroreflex-promoted non-REM sleep as well. Thus, key components of the cardiovascular baroreflex circuit are also integral to sleep-wake brain-state regulation.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?